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Abstract—Social network analysis (SNA) is an important and

valuable tool for knowledge extraction from massive and un-

structured data. Social network provides a powerful abstrac-

tion of the structure and dynamics of diverse kinds of inter-

personal connection and interaction. In this paper, we ad-

dress issues associated with the application of SNA to the

investigation and analysis of social relationships of people.

We provide a brief introduction to representation and anal-

ysis of social networks, SNA models and methods. The main

objective is to investigate the application of SNA techniques

to data mining in case of two social networks Facebook and

Twitter. The presented simulations illustrate how social anal-

ysis can be used to determine the interpersonal connections,

importance of actors in a given social network and detect com-

munities of people. We then discuss strength and weakness of

SNA techniques.

Keywords—centrality measures, communities detection, social

network, social network analysis.

1. Introduction

During the last decade social networks (SN) have become

extremely popular and have been attracted attention of sci-

entists of different disciplines, such as sociology, epidemi-

ology, economy, computer engineering, telecommunication

and many others [1]–[7]. Many systems in nature and tech-

nology are examples of social networks, i.e., systems com-

posed of a large number of highly interconnected individ-

uals (actors), whose structure is irregular, complex and

dynamically evolving in time. Communication networks,

such as the Internet and the World Wide Web, are exam-

ples of SN.

A social network is formally defined as a set of actors or

social groups, and relationships such as: friendship, col-

laboration, business, political, etc. The first approach to

capture the global properties of such systems is to model

them as graphs which nodes represent the actors and links

the relationships between them. Nevertheless, most of real

world networks are characterized by the similar topologi-

cal properties, such as relatively small characteristic path

lengths, high clustering coefficients, degree correlations,

which make them radically different from regular lattices

and random graphs. Hence, in many cases the standard

models from graph theory cannot be applied, and the ded-

icated techniques and methods have to be used.

In the beginning, the social network became a field of in-

terest of sociology that did not use mathematical graph

theory. It has appeared soon that merging experience of

sociology and graph theory needed the dedicated formal

social network analysis (SNA) methods.

Social network analysis is a group of graph theory based

techniques that can be used to retrieve meaningful knowl-

edge from networks formed by various actors. In the re-

cent past, SNA techniques have been rapidly increasing

their advance into a wide variety of applications and

systems [2], [3], [8]–[13]. Due to powerful computers,

emerging and widely adapted platforms such as Facebook,

Twitter, Foursquare, nk.pl, and many others SNA has be-

come commonly used approach to interpersonal connec-

tions analysis. Data about relationships of people are com-

monly available like never before, and applying analytical

methods to them became a source of unique and valuable

knowledge.

In literature, one can find an extensive survey of state of

the art in SNA techniques and methods [1], [7], [14]–[18].

The topological and structural properties of social networks

are considered. The major results and concepts in SN, with

focus on the fundamental concept, i.e., scale-free and small-

world properties, and current approaches to SN analytical

analysis and simulation are described and discussed. Nu-

merous books and papers present models demonstrating the

main features of evolving networks, network topologies,

and summarize software, currently used in the analysis of

complex network systems.

The main aim of this paper is to present the applica-

tion of SNA methods to retrieve meaningful information,

from commonly used social media platforms. The goal

of presented case studies is to show that SNA can be

a strong technique to investigate the interpersonal connec-

tions. However, the application of SNA has some limita-

tions and requirements for input data. The remainder of

this paper is organized as follows. In Sections 2 and 3,

we provide the introduction to SNA techniques. We focus

on social networks properties and popular measures in SN.

In Section 4, we describe two popular algorithms of com-

munities detection. In Section 5, we present and discuss

the results of simulation experiments. Two of them show

the effectiveness of application of SNA techniques to data

mining, in the case of the social networks Facebook and

Twitter. The goal of these experiments was to illustrate
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how social analysis can be used to determine the social re-

lationships of people. The next test concerned with cliques

detection, show limitations of SNA techniques. The paper

concludes in Section 6.

2. Properties of Social Networks

Various measures are used to classify a network to be the

social network. They are commonly used by researchers

and commercial users to analyze characteristics of social

networks to be considered. The most important measures

that come from the graph theory are presented below.

2.1. Basic Measures

Node degree. The simple measure for an individual actor

in a network is the degree of the corresponding node. From

the graph theory the degree ki of the node i is defined as

follows:

ki =
N

∑
j=1

ai j =
N

∑
j=1

a ji , (1)

where N denotes a number of nodes in a network, ai j ele-

ment of the coincidence matrix A defined as follows: ai j = 1

if the nodes i and j are interconnected, ai j = 0 otherwise.

Shortest path. A critical primitive in large scale graph

problems is the estimation of the shortest path – a path

between two network nodes in a given network, such as

the sum of their weights corresponding to edges is mini-

mized. The average shortest path for the whole network

is widely used in SNs to capture characteristic features of

these networks. The average shortest path is calculated as

follows:

l =
1

N(N −1) ∑
i6= j

d(i, j) ≈
lnN

k
, (2)

where N denotes a number of nodes in a network, d(i, j) the

shortest path between nodes i and j, k the average degree

of nodes calculated according to Eq. (1).

Clustering coefficient. Clustering coefficient Gi of the node

i is defined as a fraction of existing edges between neigh-

bors of the node i, and all edges that are possible between

those neighbors. In undirected network, the maximal num-

ber of edges is computed as
ki(ki−1)

2
, where ki denotes the

degree of the i-th node. Clustering coefficient of the node

i is computed as follows:

Gi =
2|{e jk}|

ki(ki −1)
, (3)

where {e jk} denotes a set of edges connecting neighbors

of the node i.

We can calculate average clustering coefficient (G) in a net-

work:

G =
1

N

N

∑
i=1

Gi , (4)

where N denotes a number of nodes.

2.2. Properties of SN

The common properties of social networks are:

– scale-free networks,

– clusterability,

– small-world networks.

Social networks are conjectured to be scale-free. The typ-

ical scale-free network consists of a few nodes with high

degree, and long tail of nodes with low degree. It is a com-

mon structure of most networks encountered in nature that

was investigated by R. Albert and A.-L. Barabási and de-

scribed in [19] and [20]. R. Albert and A.-L. Barabási

observed that in case of social networks a degree distribu-

tion follows a power law:

P(k) ∝ k−α , (5)

where P(k) denotes a probability that a degree of randomly

selected node will be equal to k.

Typical social network consists of a set of communities,

grouping strongly connected actors – the value of G defined

in Eq. (4) is usually high (close to 1). Hence, we can say

about high clusterability of SN [7].

The small-world networks were investigated by D. Watts,

and described in [18]. It was proved that networks that

widely occur in nature, especially communities of people

are small-world networks. The typical feature of so-called

small-world networks is that an average shortest path l de-

fined in Eq. (2) is very small relative to the number of

nodes N forming a network. It can be observed that in

social networks l ≈ ln(N)/k.

3. Centrality Measures

In many social network applications, the main objective of

data analysis is to identify the most important actors in

a network. We consider a network node (an actor) to be

a prominent one, if it is extensively involved in relationships

with other nodes that form a social network. Moreover, an

importance of a node relies on the number of prominent

nodes that are connected to this node. A variety of sta-

tistical parameters – centrality measures were designed to

show differences in the importance of actors. They are de-

scribed in details in literature [7], [17]. To calculate these

measures direct and indirect, inter-node connections have

to be considered. In this section we present definitions of

the most noteworthy and popular measures.

3.1. Betweenness Centrality

A betweenness centrality is a very important measure,

while considering flows in a network. The large between-

ness value means that a given actor is connected with many
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other actors (directly and indirectly). The betweenness cen-

trality for the i-th node is calculated as follows [15]:

Cbi =
N

∑
j

N

∑
k

g jik

g jk

, i 6= k 6= j , (6)

where g jik denotes a number of shortest paths linking nodes

j and k passing through the node i, g jk a number of paths

not including the node i.

Usually, Cbi is normalized to values from [0,1] by multi-

plying through 2

(N−1)(N−2) , where N denotes a number of

nodes.

3.2. Closeness Centrality

A view of a node centrality can be based on closeness

or distance. The question is how close is a node to all

other nodes in a network. This measure is very impor-

tant and commonly used in the graph theory. In general,

a closeness Cci of the node i is defined as the inverse of the

sum of distances between the node i and all other nodes in

a network:

Cci =
1

∑ j 6=i d(i, j)
, (7)

where d(i, j) denotes the shortest path between node i

and j.

This closeness measure can be viewed as a time required to

spread information from a given node to all other reachable

nodes in a network [15].

Another definition of closeness was proposed by M. E. J.

Newman in [5]. Cci is defined as the average shortest path

from the node i to all other reachable nodes

Cci =
∑ j 6=i d(i, j)

N −1
, (8)

where N ≥ 2 denotes a number of nodes in a network.

3.3. Eigenvector Centrality

The eigenvector centrality measure highlights the impor-

tance of the node i within a social network. The value of

this measure relies on a number of other prominent nodes

that are linked to the node i. The eigenvector centrality cor-

responds to the network coincidence matrix A. According

to formula (9), the centrality of the node i is proportional

to the sum of centralities of all nodes that are connected to

the i-th node.

Cei =
1

λ

N

∑
j=1

ai jCe j , (9)

where Ce j is the eigenvector centrality of the j-th node,

N is a number of nodes in a network and λ is the constant

value, ai j an element of the coincidence matrix A.

4. Community Detection

Social networks are usually formed by smaller subnetworks

(communities). It is obvious that community consists of

subset of actors (nodes) with dense inter-node connections

within this subset. The links to nodes from other communi-

ties are less dense. The communities detection, which idea

is to divide a network into communities is one of the most

interesting and important problem in the investigation, and

analysis of networks. It is a challenging task, especially

when consider overlapping communities and the dynamics

of networks. In social networks, the overlapping is natu-

ral, as people usually belong to many communities. Many

algorithms of communities detection in complex systems

have been developed and described in literature [14], [21],

[16], [22]. Two common techniques, i.e., an algorithm de-

veloped by M. Girvan, M. E. J. Newman and modified by

A. Clauset, and an algorithm proposed by V. D. Blondel

et al. are described below.

4.1. Clauset&Newman Algorithm

The first algorithm of communities detection was developed

by Girvan and Newman, and described in [22]. It was im-

proved by Clauset [16]. The idea of the Clauset&Newman

algorithm is to identify the edges in a network, which links

different communities. This identification is based on the

betweenness centrality measure Eq. (6) that is extended to

the case of edges. The communities detection is performed

in two phases. In the first phase, the betweenness central-

ity measures are calculated for all edges in the network.

Next, the edge with the highest betweenness is identified

and removed from the set of edges. A high value of the

betweenness centrality is typical to nodes connecting two

communities – many shortest paths linking nodes from dif-

ferent communities pass through such edge. In this way,

we can split our network into subnetworks. In every iter-

ation, a dendrogram is produced to illustrate how the net-

work splits into communities with the successive removal

of edges. The first phase stops when all edges are removed

from the set. The final result is the dendrogram that demon-

strates the clustering structure of a network. The algorithm

switches to the second phase. In the second phase, the

calculated dendrogram is analyzed, and a number of com-

munities forming the network is estimated based on the

value of a modularity coefficient Q. The modularity co-

efficient Q defined in Eq. (10) is calculated for all splits

performed in successive iterations in the first phase, and

demonstrated in the dendrogram.

Q =
M

∑
l=1

ell − p2

l , pl =
M

∑
m=1

elm , (10)

where M denotes the number of groups, elm denotes the

fraction of edges linking two groups l and m, ell the fraction

of edges linking nodes from the same community l, pl the

fraction of edges with at least one end vertex inside the

community l.

4.2. Blondel Algorithm

There are many alternative methods for communities detec-

tion. One of them was developed by V. D. Blondel et al.
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and is described in [14]. It is a simple heuristic tech-

nique based on modularity optimization that calculates a

network partition in a short computation time. The authors

claim in [14] that their algorithm outperforms many other

methods in terms of quality of communities detection and

computation time.

The algorithm is composed of two phases that are repeated

iteratively. It starts from the assumption that every node

is assigned to a different communities, hence the initial

number of communities is equal the number of nodes N in

a network. Next, for each node i and all its neighbors j val-

ues of modularity coefficient Q (10) are detected under the

assumption that the node i is moved to the community of j.

The calculations are repeated for all neighbors of i. Finally,

the node i is moved to the community, for which the gain

of Q is the highest one. The calculations are repeated for

all nodes in a network, until no further improvement can

be achieved. The algorithm switches to the second phase.

A new aggregated network is built. In every community

detected during the first phase, all nodes from this com-

munity are aggregated into one super-node. The weights

of the edges between super-nodes are equal to the sum of

weights of edges, linking two communities corresponding

to these super-nodes. Hence, a new network is formed by

these super-nodes. The second phase is completed and the

first phase of the algorithm is executed for the aggregated

network. Then, both phases are repeated iteratively, until

no further improvement in the modularity coefficient can

be achieved. The result of the algorithm is the partition

of the original network into communities. Moreover, the

algorithm also computes division inside computed groups.

5. Numerical Experiments

Multiple experiments were performed for data acquired

from widely used social networks. The goal was to ver-

ify the results of application of SNA methods to knowl-

edge extraction from massive commonly available data. In

our tests, we validated and compared two techniques for

community detection, described in the previous section:

Clauset&Newman and Blondel et al. algorithms. Four se-

ries of experiments were performed for data acquired from

the social platforms. The objective of the first set of tests

was to compare the performance of described grouping

techniques. Next, two series of experiments were per-

formed for data about interpersonal connections, acquired

from two commonly used platforms Facebook and Twitter.

Different kinds of social networks were considered. The

last series, of tests was performed for data acquired from

the thesixtyone.com web page. The objective was to detect

cliques of malicious voters.

5.1. Comparison of Algorithms of Communities

Detection

We validated the communities detection algorithms through

simulation. The accuracy and performance of three algo-

rithms were compared, two presented in Section 4 and

MCL (Markov Clustering) technique described in [23].

All experiments were performed for data containing mem-

bers of Karate club from San Francisco. The results of

calculations, i.e., discovered communities are presented

in Figs. 1–3.

Fig. 1. Detected communities (Clauset&Newman aglorithm).

Fig. 2. Detected communities (MLC aglorithm).

Fig. 3. Detected communities (Blondel aglorithm).

We obtained similar groupings with these three algorithms,

although with some differences. Both Clauset&Newman

and MLC algorithms discovered two groups, which dif-

fered only in two nodes. The disadvantage of the MLC

algorithm is that it has to be tuned manually, so it is dif-
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ficult to use. The Blondel algorithm identified four groups,

but after dividing them into two pairs and merging mem-

bers of these pairs, the results were the same as calculated

using the Clauset&Newman algorithm.

Table 1

Communities detection – calculation time

Algorithm Calculation time [s]

Griewan&Newman 5.051

MLC 4.979

Blondel 2.680

The goal of the second series of experiments was to com-

pare the performance and efficiency of the algorithms.

The network formed by 931 nodes and 73 228 edges was

considered. The calculation times of communities detec-

tion using different algorithms are collected in Table 1.

The results presented in this section indicate that the

Blondel algorithm produced more accurate results, and it

was about 2 times faster than the other methods. However,

from the perspective of community detection accuracy, the

suggestion is to use more than one algorithm and compare

the results.

5.2. Social Network from Facebook

Facebook is a social networking service and website that

connects people with other people, and share data between

people. A user can create a personal profile, add other

users as friends, exchange data, create and join common

interest communities. The objective of our experiment was

to validate the theorems formulated in SN domain on real

network. We extracted a subnetwork from the Facebook

database. Next, we calculated the centrality measures de-

scribed in this paper, and finally divided this network into

smaller communities. The test network was a special-kind

network, so called ego-network. In such network, all nodes

are connected to the central node (apart from being con-

nected among themselves). In our case, the central node

was one of the authors and the rest of the network was

formed by his friends that were registered in Facebook.

We started our experiment from calculating the centrality

measures of all nodes in our network. The results – values

of degree, closeness, betweenness and eigenvector central-

ity measures are depicted in Figs. 4–7. From the experi-

mental results, we can observe that for most nodes in the

test network the calculated centrality measures are similar,

low values. The results confirm theory about free-scale na-

ture of social networks. It means that in SNs, usually only

a few nodes are important and the other nodes are similarly

not so much important. Moreover, it can be noticed that

the correlation between centrality measures calculated for

all nodes in the network is positive, i.e., in case of all nodes,

a high value of one measure for a given node involves high

values of other measures for this node.

Next, measures for the whole network were computed,

i.e., a shortest path and a clustering coefficient. We ob-

Fig. 4. Degree centrality of nodes; the Facebook network.

Fig. 5. Betweenness centrality of nodes; the Facebook network.

Fig. 6. Closeness centrality of nodes; the Facebook network.
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Fig. 7. Eigenvector centrality of nodes; the Facebook network.

tained the following values: the average clustering coef-

ficient was quite high and equal to 0.7487, the average

shortest path length was rather low and equal to 1.887.

Such values of these measures are typical to small-world

networks. Hence, the results of our experiments confirmed

that our test network is a typical SN.

Fig. 8. Community detection using Blondel et al. algorithm; the

Facebook network.

Finally, we used the Blondel et al. algorithm of communi-

ties detection in our test network. The results – commu-

nities extracted from the network are presented in Fig. 8.

To verify the results of the experiment, we manually (based

on our knowledge) detected the communities that were

formed by friends of the author from different periods

of his life (primary school, high school and university).

After comparison of calculated and manually detected

groups, we obtained the accuracy of the Blondel et al. al-

gorithm equal to 68%.

5.3. Social Network from Twitter

The next series of experiments was performed for data ac-

quired from the Twitter platform. Twitter is a social net-

working and microblogging service. The users of Twitter

can exchange text-based posts called tweets. A tweet is

a maximum 140 characters long but can be augmented by

pictures or audio recording. The main concept of Twitter

was to build a social network formed by friends and fol-

lowers. Friends are people who you follow, followers are

those who follow you. Hence, the person who has many

followers in Twitter is recognized as an important actor in

a given network. The Twitter system collects not only data

about people who send tweets but also those who decide

to forward these tweets to other users of Twitter. More-

over, the tweets are aggregated to speed up Twitter. Hashtag

(a word included in a tweet preceded with a hash # sym-

bol) is added to some tweets. Next, tweets with the same

hashtag are aggregated into one stream. Therefore, per-

sons who are interested in a popular topic have an easy

and fast access to information concerned with this selected

topic.

Similarly to the previous set of tests, we tried to extract

knowledge about examined social networks. We compared

two social networks formed by two different groups of users

tweeting about two topics: a pop starlet Justin Bieber and

July Oslo massacre on Utoya island. In the first step of our

experiment we collected tweets with the hashtags #justin-

bierber and #oslo, and formed two groups correspond-

ing to two hastags. Then information about senders of all

collected tweets were downloaded from the Internet. Two

social networks (one for each tag) were built with nodes

corresponding to the senders and edges linking nodes that

followed one another. The measures described in Section 3

were calculated for both networks. The computed values of

an average clustering coefficient, node degree and shortest

Table 2

Twitter networks characteristics

Measure #justinbieber #oslo

Number of nodes 1470 519

Number of edges 7081 636

Maximal degree of node 1414 403

Avg. clustering coefficient 0.137 0.1017

Avg. node degree 9.38 2.45

Avg. shortest path length 3.06 5.95

path length are presented in Table 2. From the results we

can observe that people twitting about Justin form a com-

munity with higher connectivity. It seems credible because

this group consists of young people – typical users of so-

cial networking platforms such as Twitter, Facebook etc.

and fans of the singer. The “oslo” network was formed by

loosely connected people just as a response to one event
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Fig. 9. Degree centrality of nodes; the Twitter network.

Fig. 10. Betweenness centrality of nodes; the Twitter network.

Fig. 11. Closeness centrality of nodes; the Twitter network.

that had suddenly happened. Next, we calculated the cen-

trality measures. The results are depicted in Figs. 9–12.

Finally, we checked the scale-free structure of the Twitter

network. The calculated degree distribution is presented

in Fig. 13, and the retweet distribution using approxima-

Fig. 12. Eigenvector centrality of nodes; the Twitter network.

tely 65% of tweets in Fig. 14. Our experiments proved that

the topic-based networks, as Twitter, are typical scale-free

networks.

Fig. 13. Degree distribution; the Twitter network.

Fig. 14. Retweet distribution using approximately 65% of tweets.

The untypical result is a peak in histograms describing

“oslo” network, Fig. 14. It can be caused by a variety of

actors with high centrality forming this network. We can
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expect that participants of this network are typical lead-

ers, i.e., news agencies or newspaper accounts, and another

leaders – information brokers such as journalists.

5.4. Detecting Cliques of Malicious Voters

The last series of experiments was performed for data ac-

quired from the thesixtyone.com web page. This page is

owned by the record company. It presents pieces of songs

done by young, rather unknown artists that try to release

their first album. The company founds a recording of such

an album for the group, which get the highest number of

votes given by the web users. In general, democratic vot-

ing is widely adopted by many web applications. Unfortu-

nately, in case of such a voting there is an obvious room for

abuses, such as bribing the voters or using voting bots in or-

der to get the highest number of votes. For this reason, the

owner of the thesixtyone.com is interested in discovering

such cliques of malicious voters.

The formulation of the problem was as follows: given the

list of objects and lists of users, who voted on these objects,

identify cliques of malicious voters. Every voter could vote

on many objects, but on one object each voter can vote

only once. The SNA techniques were employed to solve

the problem. First, the social network formed by voters

was generated, and then the communities detection algo-

rithms were employed to identify groups of voters. Finally,

we tried to recognize suspicious groups – cliques of ma-

licious voters. The network was created under following

assumptions.

• The network was formed by voters (network nodes).

Each edge linked two voters voted on the same object.

• The weights were assigned to each edge; weight = 1

L
,

where L denoted a number of times that connected

voters voted on the same object.

• The edges with values of weight grater than an as-

sumed threshold value cut-off level were removed

from considerations (only persons who often vote on

similar objects were suspected).

The Blondel algorithm was used to detect cliques. The net-

work was divided into groups. The smallest one consisting

of 106 voters (11.38% of network nodes) was recognized

as a clique of malicious voters.

In order to verify the performance of the proposed method,

we performed several experiments for data generated by our

network simulator. The simulator applies NetworkX library.

It was used to generate networks with properties similar to

the thesixtyone network. Next, the list of malicious vot-

ers was generated. Using different parameters we gener-

ated networks with different properties (number of cliques,

size of cliques, etc.). Multiple experiments were performed

for a network formed by 500 nodes, cut-off level=1/3, and

different input parameters. In general, the results were un-

satisfactory. On average, only 5% of voters recognized as

suspected persons were among real malicious voters.

The results of this experiment show the limitations of ap-

plication of simple grouping techniques to social networks

analysis. It is often difficult to divide actors who behave

in a similar way into groups. The key issue is to define

the adequate criterion or measure for the selecting proce-

dure when strong differences between actors can not be

observed. In such cases other methods of analysis applied

to larger set of data should support the simple SNA tech-

niques (see [12]). In case of our experiment we probably

could reduce the number of badly classified voters consid-

ering data from not one but series of voting records.

6. Summary and Conclusion

The paper provides the short overview of social network

analysis techniques. The common properties of social net-

works were summarized. By performing experiments for

real life social networks available in two different types of

popular social services Facebook and Twitter, we tried to

show that SNA is a valuable tool for extracting knowledge

from networks encountered in nature, especially networks

formed by people. Our results confirm that both Facebook

and Twitter are typical social networks, i.e., scale-free and

small-world networks. It is worth mentioning that SNA

techniques are based on data processing, and unfortunately,

they may fail for more complex problems when network

properties and available data are not enough to make a de-

cision and solve a task.
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