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Abstract—This paper describes the performance of various
methods of QoS assurance for each connection in an environ-
ment composed of virtual networks and dedicate end-to-end
connections inside them. The authors worked on the basis of
research conducted with the use of the authorial network man-
agement system named Executed Management, which uses
resources virtualization platforms VMware and Mininet for
testing purposes. We briefly describe our system and tech-
niques we used and some alternatives we tested and discarded
because of their limitations. Functionality and performance
of proposed solution to widespread implemented mechanisms
as OpenFlow and MPLS are compared. Reasons for select-
ing well-known techniques to isolate networks and limit band-
width on different levels of virtualization are considered. The
purpose of this paper is to show out our studies and perfor-
mance we achieved.
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works, virtual networks performance.

1. Introduction

The purpose of the project was to build a system that con-
figures network in order to satisfy QoS requirements for
large number of applications. The applications run in mul-
tiple virtual, isolated networks that share a single physi-
cal network. The system has to create connections inside
these networks, with specified paths and guaranteed band-
widths, dynamically in response to applications’ requests.
It means that the system must be aware of network con-
tent. Only well proven and commonly implemented algo-
rithms, protocols and techniques were to be used because
the system should operate in the network built with generic
equipment. This paper describes selected resources virtual-
ization method and compares its performance to solutions
providing similar capability.

Many techniques may have been applied in order for above
mentioned goals to be achieved. First step of desribed work
was to compare features of Multiprotocol Label Switching,
IEEE 802.1ad (QinQ), IPv6-in-IPv6 tunneling and Provider
Backbone Bridging. The authors decided to use VLANs
to isolate virtual networks and to run dedicated virtual or
physical machines for handling ISO OSI L3 networks inside
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these L2 networks. Then we decided to build the central-
ized system to manage network resources. The task of the
system was to handle requests of applications and to cre-
ate dedicated tunnels inside virtual networks in reply to the
requests. Each connection between end nodes and each vir-
tual network must have guaranteed bandwidth. A variety of
traffic engineering methods were tested and the shaper of
tc linux application was selected. The traffic of an end-to-
end connection is limited in virtual interfaces (end-to-end
tunnel entry points) by TBF classless queuing discipline.
The traffic of virtual networks is limited in physical in-
terfaces that send traffic into the network. u32 classifier
filters packets belonging to a specific VLAN and the traf-
fic is enqueued to the HTB classes to limit its bandwidth.
Furthermore, the system ensures uninterrupted transmission
without delay variation in case of tunnel path or bandwidth
modification.

The laboratory network was built using VMware ESXi
server (Debian hosts run in virtual machines), Mininet ser-
vice [1], [2], Juniper EX4200 switch and two MikroTik
RB800 devices. Mininet was designed as a network emu-
lator for testing OpenFlow but we made some modification
to make Mininet meet our needs. MikroTiks was used as
a precise bandwidth and latency testing tools.

The authors experimented with the performance of the sys-
tem both within the scope of delays in connection handling
(creation, removal, modification) and within the scope of
QoS ensuring, which means guaranteeing bandwidth re-
quested by user’s applications and preserving low packets
flow latency in case of existing connections reconfiguration.
In order to point advantages and disadvantages of proposed
solution its functionality was compared to widespread im-
plemented mechanisms like OpenFlow and Multiprotocol
Layer Switching (MPLS).

In order to choose the best solution capability of MPLS,
QinQ and Provider Backbone Bridging (PBB) along with
suitable traffic shaping and policing techniques was ana-
lyzed, before we decided to modify the solution described
in [3], [4] to meet our requirements. This solution uses
VLANs and IPv6-in-IPv6 tunneling.

MPLS was dismissed due to the fact that most of its

implementations in modern network equipment do not
fully support IPv6. For deployment of MPLS and IPv6,
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Fig. 1. Testing topology.

the protocol stack has usually to include following ele-
ments: MPLS, IPv4, VPLS and then IPv6. Furthermore,
MPLS does not solve the problem of two applications,
when each of them needs an end-to-end connection with
the same pair of hosts using different QoS requirements.
On the other hand, MPLS was a strong candidate because
it offer simplest, fully automated configuration of the end-
to-end connection. It does not require our system connect
to and configure each node on the path separately.

QinQ seemed to be easy in implementation due to
widespread support of this standard but it has several lim-
itations, which are crucial in the context of this work. The
most important disadvantage is a necessity to block com-
munication of the host with the entire network, while the
host is connected to another host. It is an implication of
the requirement that end-to-end connection must be iso-
lated and we cannot require end hosts to implement QinQ.
Then, it is impossible to fulfill these conditions and handle
separate, concurrent end-to-end connections for multiple
applications on a single host.

Provider Backbone Bridging might perform well in the core
network but it is Layer 2 protocol, so it is difficult to dis-
tinguish between multiple applications on a single host.
Furthermore, PBB is a novel, advanced standard and un-
supported by most of devices available for our research.
We tried to used PBB to our purposes but it has almost all
MPLS disadvantages and adds some more because of lack
of support in general equipment.

Chosen Virtualisation Method for Isolated Parallel
Networks

For creating parallel networks VLANs was used. End
nodes were connected to specified VLANs and thus they
can communicate only within definite part of the network.
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That end nodes belong to a single virtual parallel network
unless they have multiple network interfaces. End nodes in
different networks may have a common physical gateway
but traffic intended for specified virtual networks have to
be forwarded to proper virtual gateways. The end nodes can
also be connected to external, unmanaged networks without
QoS warranties (such as GSM). In above mentioned case
we assume that first managed by us router on the connec-
tion path is the connection gateway and that node receives
traffic with proper VLAN tagging. All physical gateways
forward traffic to proper logical gateway by VLAN tag-
ging performed on switch to which end nodes are directly,
physical connected. The use of physical router for serv-
ing the virtual network is possible in the case when it has
routed VLAN interfaces or deal with only one virtual net-
work. It is strongly discouraged except the situation when
it is not possible to tag packets that come to the router from
end nodes.

The virtualization of the level 1 of the core network looks
similar. The packets that belong to a particular network
are sent from a logical gateway and are tagged by a phys-
ical node that hosts the logical router. In the next physi-
cal node analogous actions are performed. Based on tags,
received traffic is forwarded to appropriate virtual router,
which serves a particular network. In this way networks
isolation is assured and delegation of virtual network man-
agement is possible. Network managing for external en-
tities such as clients that would buy one virtual network
can be delegated and have full control of virtual routers in
theirs network.

There is also possibility to create a section of the logical
network (core network, edge routers and end nodes) on
a single physical device by intentional configuring virtual
logical connections between virtual machines, with the use
of resources virtualizer. As you can see in Fig. 1, we use
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that to create testing purpose network with two physical
hosts only.

When configuring the network, it is required to use a dy-
namic routing protocol (in our case it is OSPFv3) both be-
tween physical nodes and within virtual networks for logical
nodes. It ensures full reachability of all the hosts and also
communication for the management system and the nodes
on the all virtualization levels.

The virtual networks of first level in the testing topology
are built with the use of VMware ESXi virtualization plat-
form, physical host with Mininet software, Juniper EX4200
switch and two MikroTik platforms RB800. ESXi served
for virtualizing several access networks, end users’ ma-
chines and virtual management server. Mininet was used
in order to create two virtual backbone networks made of
routers running Ubuntu operating system. The MikroTik
devices were connected as physical end nodes for simulat-
ing users’ computers and generating traffic for benchmark.
The MikroTiks, through the Traffic Generator tool, which
is built in RouterOS, collected statistics from transmit-
ted/received data: packet loss rate and packet latency distri-
bution. VLANSs indicate which logical routers from access
networks (ESXi) are allowed to communicate with specific
logical routers in the core network (Mininet). In order to
control Mininet host’s incoming traffic, we had to mod-
ify Mininet scripts and create in this way properly defined
virtual network with willful assignment of interfaces, ad-
dresses and connections. The Juniper EX4200 switch con-
nects physically (Gigabit Ethernet) and logically (VLANS)
the EX4200 machine and the host with Mininet. The test-
ing topology consists of two parallel networks, whose only
common point is a management node, which must be able
to communicate with both virtual networks. The topology
is presented in Fig. 1.

2. Network Virtualization

2.1. Chosen Method of End-to-end Connections
Virtualization

End nodes operate in specific parallel network, so they can
communicate with all other devices in this parallel network.
At the time when they need to communicate, they do not
start transmission directly but one node sends request to
the Execution Management server. The management sys-
tem analyzes QoS requirements for the new connection and
available network resources and then it creates a proper
IPv6-in-IPv6 tunnel. At the end of this process the applica-
tion is informed that dedicated connection was established
and it can start transmission. Virtual connections of sec-
ond level are tunnels, which are dynamically created for
each application use case. These tunnels are set on edge
routers — the gateway routers for end nodes inside parallel
networks. We do not impose any (non-standard for a generic
IPv6 network node) requirements to end nodes owing to
the approach in which traffic is directed to the tunnel by

40

the mechanism implemented entirely in edge routers. This
mechanism bases on packet filtering by following IPv6 and
TCP headers fields: source address, destination address,
source port, destination port. It is important that a com-
puter, in case of having multiple active IPv6 addresses, uses
for communication only the IPv6 address that was included
earlier in the connection establishing request.

In order to preserve integrity of the network, the tunnel
is configured on virtual dedicated interfaces, which are
subinterfaces of loopbacks on edge routers. The address-
ing schema within tunnels is calculated with the use of
48-bit subnet divided into 126-bit mask subnets. The ex-
ternal addresses of the virtual interfaces use reserved pool
of routed addresses. It is worth to mention that authors
used the potential of IPv6 addressing which offers enough
addresses to assign separate addresses for each parallel
network. The external addresses of the tunnels are used
to route the packets of its tunnel through the fixed path.
Owing to this approach we are able to control tunnel path
easily, by applying static routing based on destination IPv6
only. It is significant advantage since we can use any
generic router in the core network and we do not cause
high CPU utilization.

2.2. Limiting of Network Resources

The first part of network resources managing was to limit
the bandwidth of entire parallel network. Except assigning
resources for particular networks, it was necessary to re-
serve some bandwidth for management traffic and OSPFv3
packets. The mechanisms built into networking hardware
to limit bandwidth of an interface and a software tool that
implemented HTB algorithm was used, in which appro-
priate classes based on VLAN tags were created. Then
bandwidth limits with these classes was associated.

It is advised for an administrator of an isolated network to
use traffic shaping or policing mechanisms for isolating the
class of traffic for signaling purposes. In order to achieve
this, the mechanism that classifies all the traffic that is not
an IPv6-in-IPv6 tunnel (by checking corresponding IPv6
header field) and guarantees bandwidth for this class is
proposed.

The remaining traffic belongs to IPv6-in-IPv6 tunnels. Due
to the use of dedicated virtual network interfaces in edge
routers bandwidth of given tunnel can belimited simply by
one classless tc gdisc discipline (e.g., by recommended To-
ken Bucket Filter — TBF) configured on this virtual tunnel
interface. This approach does not require traffic classify-
ing. Centralized management of dedicated connections, in
the networks which resources is known, guarantees that all
the connections have sufficient resources and thus QoS is
ensured. If a new connection would exceed the capacity of
the network, the system simply rejects the connection and
informs requesting application about the reason.

The variant possibilities of tunnel bandwidth limiting are
briefly described in Section 5.
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3. Management System

The management system, which was used for testing, was
built especially for such purposes. It is made up of the
Execution Management module, a database, and a support-
ing QoS module. The database stores i.a. the state of the
network, which is data concerning all the nodes and con-
nections on all the levels of virtualization. This is used to
find an appropriate path for a new connection.

The system receives requests via a web application (that
was built for an administrator for network managing pur-
poses) or directly from applications via XML messages.
For communication with the management system a dedi-
cated traffic class with guaranteed bandwidth for signaling
is used. In order to make an application work independent
on the network management system, it is possible to use
intermediary layer. An example of such deployment is de-
scribed in [4], [5]. After receiving a request, the system
verifies it and sends a query for an eligible path to the mod-
ule that finds a path satisfying QoS. Then the system re-
ceives a reply and prepares scripts, which are subsequently
sent parallel to network devices in order to configure proper
services.

The connection path may be modified in the case of in-
creased QoS requirements or when given connection have
to be released because of a resources rearrangement. Such
situation occurs when a new connection must not be es-
tablished unless the resources already occupied by another
connection are released. This connection may be routed
another path that also satisfy its QoS. This process is fully
automated and is imperceptible for the user. The process
has following steps: creation of a new tunnel with new ad-
dresses and a new path, redirection of the traffic from the
old tunnel to the new tunnel, removal of the old tunnel. The
connection may also be removed in response to a removal
request from the application, which used this connection.
More about Execution Management and cooperating mod-
ules can be found in [6].

4. Performance Evaluation

4.1. Execution Management Performance

The performance of the management system is an im-
portant factor influencing QoE because it determines the
time of connection establishment. Therefore, it was crucial
to comply with ITU-T recommendations [7].

The tests were performed to determine the behaviour of
the system for a large number of queries and under dif-
ferent load (from 1 up to 100 requests). As expected, the
system was stable and retained full data integrity, even in
the case of multiple simultaneous requests for the creation,
modification, and removal connections. Each series of tests
were performed using 100 requests for a tunnel creation,
100 requests for removal and 50 requests for modifica-
tion. Test results are averaged over the repetition of each
series (1, 10 or 100 simultaneous requests) 50 times.
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Requests for testing were randomly generated in network
with 40 end nodes to test system behaviour in large network.
All time values showed in Figs. 2—4 are measured in
miliseconds.
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Fig. 2. Execution Management engine performance 1.
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Approximately 80% of the processing time in the case of
creation or modification, and up to 92% of the removal time
is consumed by database operations. Albeit these numbers
are significant, the result is much better when comparing
to the previously used external database implementation.
It probably can be further improved by creating our own
library for handling database queries created by EM.

The total execution time depends primarily on the status
of the network rather than on the performance of the vir-
tualization tools. In some cases the times were very high
due to temporary high load of Mininet host network op-
erator or VMware Server. In such situations, it dramat-
ically lengthened the waiting for SSH connection to the
nodes.

Tests exclude situation when two requests require a con-
nection via SSH to the same node. In this case, the wait-
ing time for connection can be extended up almost double.
This is due to the sequential SSH connections handling by
a device. If there is a need for multiple connections to the
same device in a single request (e.g., to configure two static
routes or route and tunnel), all commands to be sent are
combined in one. However, there is not a mechanism re-
sponsible for this in the case of multiple requests that have
to be configured on the same node because it would starve
scripts from earlier demands by continually appended sub-
sequent commands.

There is not necessary to run the tunnel removals in par-
allel because the latency caused by removal process is not
significant. Then each network is removed sequentially.

4.2. Performance of Network Mechanisms

This part of the chapter concerns the performance of im-
plemented virtualized network environment. For testing
MikroTik Traffic Generator tool was used. This is an ad-
vanced tool built into RouterOS that allows to evaluate per-
formance of DUT (Device Under Test) or SUT (System
Under Test). The tool can generate and send RAW packets
over specific ports. It also collects latency and jitter values,
Tx/Rx rates and counts lost packets.

ether 1
ether 2 \
MikroTik RB800 Juniper EX4200
Fig. 5. Topology for testing MikroTik RB800 and Juniper

EX4200 switch.

The goal of the first experiment was to examine the through-
put of MikroTik RB800. We built the scenario as shown
in Fig. 5. One stream of packet to examine unidirectional
maximal throughput in half duplex (when network works
stable) and two parallel streams of packets to examine
bidirectional maximal throughput (full duplex) were used.
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The real maximal transmission rates were higher but con-
nection was unstable. There were high packets losses and
high latency. We arbitrary assumed that acceptable packet
loss is 0.1%. Transmissions that have more packet loss
were not considered. Results are presented in Table 1.
The values are rounded down to nearest 5 Mbit/s. Each test
lasted for 90 seconds.

Table 1
Results of performance tests of MT RB800
and Juniper EX4200

L Packet size | Throughput
Direction [bytes] [Mbit/s] Latency
Min: 109 us
ether1—ether2 1500 980 Avg: 6.5 ms
Max: 11.5 ms
Min: 32 us
e:ﬂer;:etﬂerf 1500 760 | Ave: 255 us
ctherzmether Max: 1.35 ms
Min: 23 us
etherl —ether2 100 240 Avg: 62 us
Max: 773 us
Min: 21 us
ol w0 | e
Max: 883 us

The subsequent test concerned the performance of the lab-
oratory virtual networks. The network with two MikroTik
RB800 platforms connected was used as shown in Fig. 6.
The logical topology is presented in Fig. 7. Two RB800
devices are used since single RB80O0 could be a bottleneck
in some cases. The results are presented in Table 2.

Juniper
EX4200

PC computer

HP ProLian DL360 G6 Debian

VMware ESXi

MT1 MT2
RB800

Fig. 6. Physical topology for tests.

The results show that the performance of examined vir-
tual network is comparable to the maximal throughput
of physical devices when transmitted packets are large
(1500 bytes, which equals MTU size). The significant dif-
ference in the case of two-way traffic is caused by the fact
that the traffic that flows in one direction passes the phys-
ical link between ESXi and Debian twice. Thus the real
throughput in this link is doubled.
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Fig. 7. Logical topology for virtual environment tests.

Table 2
Results of virtual networks performance tests
Packet | Through-
Paths size put Latency
[bytes] | [Mbit/s]
R1—MR1—-MR5— Min: 471 us
MRI12—MR7— 1500 840 Avg: 1.9 ms
MR2—R2 Max: 15.2 ms
R1—MR1—MR5—
MR12—MR7— Min: 397 us
MR2—R2 1500 420 Avg: 2.2 ms
R2—MR2— Max: 13.5 ms
MR7—MRI12—
MR5—MRI1—R1
R1—-MR1—-MR5— Min: 107 us
MR12—MR7— 100 40 Avg: 253 us
MR2—R2 Max: 8.14 ms
R1—MR1—MR5—
MR12—MR7— Min: 110 us
MR2—R2 100 40 Avg: 354 us
R2—MR2— Max: 10.4 ms
MR7—MRI12—
MR5—MRI1—R1

In the case of small packets (100 bytes) the difference is
much bigger. It is caused by the fact, that this testing
scenario involves much higher packets per second rates
and each packet has to be served by each virtual router
(7 times) so the CPU performance of the virtualizers is the
bottleneck.

The second parts of tests concern the IPv6-in-IPv6 tun-
nel and bandwidth limiting mechanism for this tunnel. The
logical topology of this scenario is presented in Fig. 8.
The bold lines indicate the tunnel path. The routers R1
and R2 are tunnel entry/exit points. Table 3 presents the
test results. The maximal packets used for these tests were
smaller comparing to the packets in previous tests because
the MTU of a tunnel is decreased by the additional IPv6
header (40 bytes). Nevertheless, the presented through-
put does not involve these additional 40 bytes of data.
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With default configuration of IPv6-in-IPv6 tunneling
in Debian 6, the displayed MTU of a tunnel interface is
1460 but the real MTU is 1452 bytes. These missing
8 bytes was reserved for an encapsulation limit extension
header, which was confusing since this extension header
was not transmitted. We explicitly disabled encaplimit in
order to transmit full 1460 bytes packets.

VMware ESXi Mininet
R1
MR MR10 MR14
MR1
R19
R15
RS
MRE MR11
MT1 [ MR2 R16
R MR12
MR8 MR17 R20
R2
MR3 MR9 MR13 MR18

Fig. 8. Logical topology for tunnel testing

The Transmission rate column of the Table 3 means the
fixed rate at which the MikroTik was sending data. Tun-
nel bandwidth means the value of tunnel bandwidth limit.
Throughput is the rate at which packets were coming back
to the MikroTik (after passing the tunnel).

The results presented in Table 3 are comparable to the
results presented in Table 2. It means that implemented
by us mechanisms does not introduce significant over-
head to packet processing. The drop of the throughput
is most noticeable in case of small packets and it is
about 12.5%.

5. Bandwidth Limiting Methods

5.1. Limiting Bandwidth of Virtual Network

VLAN interfaces were chosen for implementation of paral-
lel networks, which determined the methods of bandwidth
limiting that might be used. It was important to limit band-
width of virtual networks from outside of these networks.
This implicates that virtual networks administrators do not
need to take any action to limit bandwidth of their network.
Because the limits are on different level of virtualization,
they are invisible for the administrators and they cannot be
exceed.

Ensuring bandwidths for VLANs was implemented by set-
ting bandwidth limits for all the VLAN interfaces on the
node. Specific implementation is equipment dependent but
almost each carrier-class switch or router is capable to per-
form this task and such implementation is fairly easy.

5.2. Limiting Bandwidth of End-to-end Connection

Recall that all the functions concerning QoS are performed
on edge routers, which are gateways for end users. It is true
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Table 3
Results of tunnel performance tests
Paths Packet size | Transmission rate | Tunnel bandwidth | Throughput Latency
[bytes] [Mbit/s] [Mbit/s] [Mbit/s]

Min: 1 s
R1—MR1—MR5— MR12—
MR7— MR2—R2 1460 950 790 825 Avg: 1s

Max: 1.06 s

Min: 494 us
RIZMRIZMRS= MRIZZMRT= 1460 790 790 790 | Ave: 1.2 ms
MR2—R2

Max: 9.4 ms
R1—-MR1—MR5— MR12—MR7— Min: 1 s
MR2—R2 R2—MR2— MR7— 1460 950 410 412 Avg: 1s
MR12— MR5—MRI1—R1 Max: 1.03 s
R1—-MR1—-MR5— MR12—MR7— Min: 353 us
MR2—R2 R2—MR2— MR7— 1460 410 410 410 Avg: 4.5 ms
MR12—MR5—MR1—R1 Max: 19.4 ms

Min: 1.01 s
;ﬁgfﬁ;HMRs = MRE2=MR7=1 09 400 35 35 Aveg: 1.01 s

Max: 1.01 s
R1—MR1—MR5— MR12—MR7— Min: 137 ps
MR2_R2 100 35 35 35 Avg: 514 us

Max: 7.6 ms
R1—MR1—MR5— MR12—MR7— Min: 1 s
MR2—R2 R2—MR2— MR7— 100 200 35 35 Avg: 1s
MR12— MR5—MRI1—RI Max: 1.02 s
R1—MR1—MR5— MR12—MR7— Min: 149 us
MR2—R2 R2—MR2— MR7— 100 35 35 35 Avg: 624 us
MRI12— MR5—MRI1—RI1 Max: 36.2 ms

in our case but the architecture of our system does not dis-
enable the use of separate, hardware traffic shapers, which
is the case in many professional applications. Guarantee of
the bandwidth for end-to-end connections in described im-
plementation is achieved by limiting the bandwidth for the
[Pv6-in-1Pv6 tunnel interfaces. It is a mechanism similar
to the above mentioned mechanism for limiting the band-
width for VLANS: in both cases we limit the bandwidth of
a virtual interface. Nonetheless, the actual implementation
may vary significantly because handling VLANS is usually
performed by switches and IPv6 tunneling by routers since
most switches (even with L3 support) are not capable of
[Pv6-in-IPv6 tunneling.

We focused on implementation end-to-end connection
bandwidth limit in Debian 6 OS. A fc tool for performing
traffic control was chosen because this is a very efficient
and common tool, almost each traffic control application
in linux bases on fc. Indeed, tc is very powerful and has
functions that meet the requirements.

We used Token Bucket Filter (TBF) classless queuing dis-
ciplines. It suits our requirements best because we do not
need hierarchical structure offered by classful disciplines
(we have only one class in one interface, without involving
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priorities). TBF is less CPU algorithm, which is impor-
tant advantage for us because the tests showed that in some
cases the performance of virtualizer CPU is bottleneck, be-
cause the host CPU is engaged in not only virtual CPUs
virtualization but in virtual network adapters too. These
advantages make TBF the recommended qdisc for limiting
the bandwidth of the entire interface.

Here is an example configuration for the tunnel bandwidth
limiting in Debian 6 for the tunnel interface named tunnel.
The rate parameter is our bandwidth limit.

tc qdisc add dev tunnel root tbf
rate 2 Mbit latency 1000 ms burst 15000

Please note how fc calculates units:
1 Mbit = 1000 Kbit = 1000000 bps

It is commonly confused that specified rate of 1 Mbit equals
1024 - 1024 bytes.

The latency parameter limits the buffer of the algorithm.
It means that packets that would wait longer than 1000 ms
are simply dropped. Instead of latency, it is possible to
use /imit parameter, which means the size of the buffer in
bytes. These two parameters are mutually exclusive.
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The burst parameter is the size of the bucket, in bytes. We
increased this value from default 5000 to 15000 in order to
let algorithm handle high traffic rates (above 100 Mbit/s).
On the other hand, if buffer is too large, the algorithm’s
precision recede considerable. We chose the value 15000
by experiments.

The only problem concerning traffic control that we were
not able to solve is the lack of preciseness when the rates
are very high (especially higher than 500 Mbit/s). It is the
result of the fact that traffic control is performed by CPU
that operates with non-zero time slots and it follows with
finite resolution of traffic control mechanisms. The lack
of precision is up to 5% of declared rate while the value
is 800-1000 Mbit/s. In real applications it does not seem
to have serious implications because such large bandwidth
rates are rarely reserved for a single end-to-end connection.
Yet even in this situation, the QoS is still ensured if 5% of
mechanism inaccuracy is calculated in bandwidth allocation
plan. If one needs perfect precision with high transmission
rates, it is advisable to use a high-class hardware traffic
shaper.

6. Performance Comparison
and Conclusions

6.1. Comparison of the Performance of the System with
the Performance of Alternative Solutions

The authors did not conduct experiments but used the re-
sults delineated in [8] in the case of OpenFlow and in [9]
in the case of MPLS. Regarding to benchmarking Open-
Flow, two factors are to be considered. The former is the
performance of a controller and the latter is the bandwidth
of switches.

Table 4 presents the performance of different controllers
running in one-thread mode on a highly efficient machine
with 16-cores processor AMD, 40 GB RAM memory and
Debian Wheezy operating system, which hosted simul-
taneously 16 switches with 100 unique MAC addresses
each [8]. The controllers were limited to one-thread op-
eration because the Mirage controller does not support op-
erations on many cores simultaneously.

Table 4
Performance of OpenFlow controllers

Controller Averaﬁf/[ g;i/osl]lghput Avera[gr(; Sl]atency
NOX fast 122.6 27.4
NOX 13.6 26.9
Maestro 13.9 9.8
Mirage UNIX 68.1 21.1
Mirage XEN 86.5 20.5

As shown in Table 4, the performance of different con-
trollers may vary widely, up to 10 times. It means that
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the system in the worst case may be not able to handle
a new flow that is directed to the controller, hence it will
not ensure QoS. Execution Management does not have this
issue because it informs an application whether the connec-
tion may be established. The application may start to trans-
mit only when a dedicated tunnel with guaranteed band-
width is active. Due to this proceeding, an end user waits
a little bit longer to start for example VoIP conversation,
but after the connection is established he has ensured suf-
ficient bandwidth for a VoIP transmission with required
quality.

The second, important dimension of the performance is the
throughput of devices. In the case of OpenFlow use, it is
required to covey to the controller instructions for dealing
with a particular connection. It requires the middleware that
would communicate with applications and the controller. In
such case, the throughput is not constrained by switches.
Due to the hardware handling of traffic on low implementa-
tion level, the performance of OpenFlow switches does not
diverge from the performance of a generic hardware switch.
Another issue is limiting resources. The newest OpenFlow
version 1.1.0 enables the use of shapers that are built in
switches, which means that the mechanism is capable of
limiting bandwidth according to requirements even if there
are large number of separate traffic flows.

Execution Management uses classles queuing disciplines of
TBF type to limit bandwidth of tunnels. It works well for
low bandwidth rates. When large bandwidth is configured
(more than 500 Mbit/s) it is possible that mechanism would
accept the transmission with higher rate than configured.
The order of magnitude of the difference is several percent
and it depends on configured bandwidth limit. The general
rule is that the higher limit is set the bigger is inaccuracy,
although slight anomalies may occur while experimenting
with narrow range of bandwidth values. We increased the
burst parameter of TBF discipline (using fc gdisc tool) to
10 times MTU size, which cause that the real maximal
bandwidth is always equal or higher than configured value.
It means that application always has its requested band-
width and sometimes it may have slightly larger bandwidth
than requested. This difference (5% of configured value) is
included in QoS arrangement of all the available bandwidth
of the network.

In the case of applying OpenFlow, the accuracy of band-
width limiting depends on the accuracy of traffic control
mechanisms implemented in particular device that was cho-
sen by the controller, providing that on the path there is
a device that implements traffic control mechanisms.

The second mechanism chosen for comparison is MPLS.
In this case there is also lacking a module that allows
application to communicate with a network management
system in order to establish requested connections auto-
matically. Furthermore, MPLS does not have measures
to distinguish between different applications running on
a single host. On the other hand, the performance tests
shows advantage of MPLS over other solutions. Due to the
hardware implementation of packets switching in network
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nodes, the performance of MPLS based network is the
same as the performance of routed network (with hardware
routers).

For traffic management LDP and RSVP protocols might
be used. In case of applying both protocols for path and
bandwidth managing it is possible to achieve our goals
(limiting bandwidth of end-to-end connections, determining
the connection’s path) but it may cause significant packet
loss. According to research [9], the use of above mentioned
protocols causes the packet loss of 0.03% to 0.17%. For
comparison — our solution does not influence the packet
loss rate. Only in the extreme situation, while switching
large traffic (more than 100 Mbit/s) from one tunnel to an-
other, the loss of up to 16 packets may occur. Such packet
loss does not occur with each iteration (with most itera-
tions no packet is lost). Even in this extreme situation, the
packets loss in a second of tunnel path changing is no more
than 0.02%.

6.2. Conclusion

For the performance tests of virtual networks with resources
guarantees for dedicated connections or for entire isolated
virtual networks, we used the Execution Management sys-
tem for end-to-end connections establishment. We focused
on existing solutions and techniques implemented in com-
mon network equipment. Owing to this fact, our solution
can be deployed in almost any network, for example as point
of reference in benchmarking. Except for testing cases,
Execution Management is also suitable for business pur-
poses. It allows selling multiple particular, limited network
resources (access to virtual networks) of a single physical
infrastructure.

The performance of our system is slightly lower comparing
to low level hardware-based mechanisms like MPLS and
OpenFlow. The advantages of our system are the simple
architecture and capability of traffic engineering (in terms
of path and bandwidth) in a heterogeneous environment
made of generic equipment. The time needed for new con-
nections establishing is not excessively high and rises only
slightly in the case of handling large number of requests
simultaneously. Moreover, the larger network is served, the
higher is probability that multiple request of new connec-
tion will be handled faster, providing constant number of
parallel requests.

It is worth to mention that Execution Management has sev-
eral significant functions that are unavailable in competi-
tive solutions, such as discrimination multiple applications
on a single host, creation many independent end-to-end
connections between a pair of hosts and full support for
IPv6. Furthermore, the system cooperates with comfort-
able, graphical web client, which may be used by the ad-
ministrator or shared with virtual networks’ administrators.

The presented system does not provide excellent perfor-
mance in the case of large number of connections with
high QoS requirements. Nevertheless, the system despite its
disadvantages meets the assumed requirements and offers
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functions that other systems are lacking. On this ground,
the system is suitable for reference testing and for design,
implementation and management of laboratory testbeds for
prototype QoS-aware applications. Execution Management
was for example utilized for initial evaluation of applca-
tions designed in the Future Internet Engineering project
such as: eDiab [10], SmartFit [11], Online Lab [12] and
others, e.g., [13], [14]. In the future work the authors will
compare the performance our solution to the performance
of the IIP System [15]-[18].
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