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Abstract—Source localization problem consists of an ensem-

ble of techniques that are used to obtain spatial information

of present radiation in given medium of propagation, with

a constraint of the antenna geometry and the characteristics

of radiating sources. This condition gives multitude of cases to

study, hence several methods were proposed in the literature.

In this paper, a new algorithm for estimating the Direction of

Arrival (DoA) of narrowband and far field punctual sources is

introduced. By exploiting the spectrum of covariance matrix

of received data, the Lorentzian function on spectral matrix

to filter the eigenvalues is applied. This filtering process elim-

inates the eigenvalues belonging to signal subspace. Parame-

ters of Lorentz function are adjusted using first and second

statistics of eigenvalues. The algorithm requires the knowl-

edge of minimum eigenvalue and is performing when the di-

mension of antenna is relatively large which is confirmed by

several Monte Carlo simulations.

Keywords—array processing, Direction of Arrival, narrowband,

operator.

1. Introduction

In the context of array signal processing, source local-

ization [1] refers to the techniques implemented to detect

the location of present radiation in space. The origin of

these radiations is often considered to be punctual sources

due to far field assumption. The radius of propagation is

larger than the maximum antenna dimension [2]. These

techniques are valid for both electromagnetic and acoustic

waves, thus a source can be cosmic, a cell phone, a seismic

wave, sound in underwater and so on. Each source is char-

acterized by its frequency, for example it can be narrow-

band [2] or wideband [3]. Due to this diversity, this field

of research has attracted more interest due to its usefulness

in many applications including radioastronomy [4], geolo-

calization such as Global Positioning System (GPS) [5],

localization of mobile stations [6], radar and sonar [7] in

both civilian and military applications, underwater acous-

tics [8], medical signal processing and seismology.

Most of localization techniques exploit the space-time di-

versity, some methods are based on time delay, known as

Time of Arrival (ToA) [1]. This concept requires synchro-

nization between the transmitters and the receivers. Other

methods use the properties of propagating wavefront along

the antenna to calculate the Angle of Arrival (AoA) of

radiating sources [2]. This mechanism has the advantage

of no requirement of synchronization. In fact, to compute

the angle of single source, at least two aerials are needed

and the distance between them is a function of wavelength

of incoming wave. In case of multiple sources, the result-

ing wavefield is a superposition of each radiation. In this

situation, an antenna with larger number of sensors must

be used, thus the antenna beamwidth becomes narrower,

which gives the ability to separate two sources with small

angular difference.

In some cases, the problem of localization becomes diffi-

cult, for example, when some sources with different sig-

nal power are present, or the propagating signals have dif-

ferent carrier frequencies or when the source signals are

highly correlated [9]. The preliminary solutions are based

on preprocessing techniques [2] to decorrelate the wave-

forms. Additionally, some of these problems are caused

by the transmission channel. During the propagation many

phenomena can occur [10], for example a wave can be

scattered, when it hits objects having dimensions smaller

than the wavelength. This condition is known as Rayleigh

scattering [10]. When a wavefield enters a medium with

different electrical properties than the previous one, a re-

fraction occurs [10]. Another type of deviation can happen

when wave faces a smooth surface like metal, a reflection

takes place with the Angle of Incidence (AoI) equals the

angle of reflection in this situation.

The problem of localization depends on the environment

and search dimensions, one dimensional scan focuses only

on azimuth angle, this type requires only one dimensional

arrays geometry. For two dimensional localization, it is

mandatory to use two dimensional arrays such as circu-

lar [11], rectangular [2], L-shaped [12] and fractal arrays.

Concerning the mathematical aspects, some Direction of

Arrival (DoA) techniques are based on extracting signals

information from second order statistics [2]–[4], in the other

hand alternative approaches use high order statistics [13].

Covariance based methods (also called spectral matrix or

cross correlation matrix) can be divided into beamform-

ing and eigendecomposition techniques [2], subspace based

techniques have resolution power that is able to locate

sources under angular limit resolution of array. These tech-

niques use several spectral decomposition which are eigen-
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decomposition [2], QR or LU factorization and Singular

Value Decomposition (SVD) [14].

Recent researches are focused on enhancing the eigen-

based approaches, when external factors impact the elec-

trical properties of sensors, such as temperature, humidity,

pressure and vibration. These variables generate coupling

effects between sensors, which degrade the performance of

DoA methods [15]. Another type of ongoing researches

offer a consistency of spectral techniques when the system

dimensions become larger [16], precisely number of sen-

sors and number of acquired samples. In the other hand,

as the dimensions tend to infinity, a computational com-

plexity increases, recent solution implements a non-regular

sampling of impinging signals, this method is known as

compressed/compressive sensing [17].

In this paper, authors introduce a new algorithm for localiz-

ing narrowband sources. Using the order of the covariance

matrix spectrum, a new operator that performs a filtering

operation on eigenvalues to isolate the noise subspace is

introduced which is orthogonal to signal subspace. From

mathematical definition this operator is the Lorentz func-

tion of Hermitian matrix, also known as Cauchy distribu-

tion [18]. This function needs adjustment of two param-

eters, the index of the function’s peak, which corresponds

to the smallest eigenvalue and the width that is related

to a threshold between signal and noise eigenvalues. The

authors use a theorem that offers a bound of minimum

eigenvalue using first and second order statistics of spec-

tral eigenvalues. The obtained bound is efficient, when the

antenna contains large number of sensors comparatively to

number of sources.

The proposed operator is validated through several Monte

Carlo simulations along with other techniques.

In the Section 2 of this paper, the statistical signal model

for DoA problem is described. In the Section 3, the au-

thor’s contribution is presented and in the Section 4 some

computer simulation results for performance analysis is

shown.

2. Statistical Data Model

Let us consider a geometry given Fig. 1 which consists of

one punctual radiating source and a uniform linear array of

N sensors placed along y axis, the system source antennas

are placed in the same horizontal plane (x,y,z = cte).
The sensors are located in the farfield region relative to the

source where the wavefront arriving are considered plane

waves. The uniform distance between the sensors is half the

wavelength of the emitting source d = λ/2 and the farfield

condition implies that the Line of Sight (LoS) r0 is much

larger than the length of the array r0 � Lλ = (N−1)d. The

propagation model [21] is given by the equation:

~∇2~Ei(~r, t) =
1
c2

∂ 2~Ei(~r, t)
∂ t2 , (1)

where c denotes the velocity of propagation c = (µε)
−1
2

and ~∇2 is Laplace operator ~∇2 = ∆ = ∂ 2

∂ x2 + ∂ 2

∂ y2 + ∂ 2

∂ z2 . By

Source
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y
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Farfield
region

N

N

( -3)N d 3

3
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2

1

Fig. 1. A farfield punctual source emitting radiations received

by a uniform linear array of sensors with azimuth angle θ relative

to the reference.

assuming the transverse mode of propagation by consid-

ering the z component of the wave vector ~Ei = (Ex = 0,
Ey =0, Ez 6= 0), the solution of the i-th source is given by:

Ez(~r, t) ' si(t)e j(ωt−~ki.~r) . (2)

The solution is only an approximation because the varia-

tion of the function si(t) is temporally negligible than the

oscillation of the carrier wave with frequency ω = 2π fc
where c = λ fc [21]. This is also known as Slowly Vary-

ing Envelope Approximation (SVEA) in other fields. The
~ki is the wave vector having the components in spherical

coordinates as:

~ki =
−2π

λi





sinϕi cosθi

sinϕi sinθi

cosϕi



 , (3)

where (θi,ϕi) are the azimuth and elevation of the i-th
source respectively. The received wavefront is a superpo-

sition of all existing sources and the magnitudes of the

collected signals are proportional to ∑P
i=1

~Ei. During the

acquisition time T = TsK, where Ts is the sampling period

and K is the number of measurements, the carrier frequen-

cies [21] terms are removed from the signals e jωt , so for

any measurement at instant t ∈ {1, . . . ,K}, the signal at the

m-th sensor with position ~rm, is given by:

xm(t) =
P

∑
i=1

si(t)e− j~ki.~rm +nm(t) , (4)

where nm(t) is the additive noise at the m-th sensor consid-

ered complex and random process with zero mean. While

considering the uniform linear array (ULA), the complex

vector of signals at instant t is:

x(t) = A(θ )s(t)+n(t) , (5)

with s(t) ∈ CP×1 is the source waveforms, n(t) ∈ CN×1

is the noise waveforms and A(θ ) ∈ CN×P is the steering

matrix given by:
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A =









1 . . . 1
e− jµ1 . . . e− jµP

. . . . . . . . .

e− j(N−1)µ1 . . . e− j(N−1)µP









, (6)

where µi = 2πdλ−1 sin(θi) and θi is the AoA of the i-th
punctual source. The rank of the steering matrix A in Eq.

(6) is P such that the P sources are located in different

angular positions θi. In a compact form, the matrix of

received signals is X(t) = A(θ )S(t)+N(t) with the dimen-

sions X(t) ∈ C
N×K , S(t) ∈ C

P×K and N(t) ∈ C
N×K . The

objective is to calculate a localization function f (θ ) from

which positions θi can be derived. Most of high resolu-

tion DoA techniques are based on second order statistics of

X(t), the spectral matrix < x(t)x+(t) > has the following

theoretical expression:

Γ = Γs +Γn , (7)

where Γs = AΓssA+, Γn = σ 2IN and Γss =< s(t)s+(t) > is

the correlation matrix of sources, if the waveforms are not

correlated, then [Γss]i j = δi jσ2
i , where σ 2

i is the power of

the i-th signal. In decreasing order, the spectrum of matrix

Γ is given as:

σΓ =
{

λ1 > λ2 > . . . > λP > λP+1 ' . . . ' λN = σ 2} .

For example one of the high resolution DoA operators [19]

exploits the threshold between the smallest signal eigen-

value λP and the largest noise eigenvalue λP+1 to calculate

the projector in the noise subspace. This latter is obtained

by spectral decomposition, indeed the spectral matrix is de-

composed as Γ = UΛU+, where Λ is a diagonal matrix of

eigenvalues and U ∈ CN×N is the orthonormal matrix such

as ‖U‖F =
√

Tr{UU+} =
√

N. The first P columns of U
correspond to the largest eigenvalues to form a base of sig-

nal subspace Us ∈ CN×P and the remaining N −P columns

form a noise subspace Un = [uP+1, . . . ,uN ]. The projec-

tor into the noise subspace Pn ∈ CN×N is defined by the

relation Pn = UnU+
n . For given steering vector a(θ ) with

testing angle θ ∈ Ω = [θmin,θmax], the localization function

verifies

f (θ ) = a+(θ )Pna(θ ) =

{

0 if θ is DoA,
6= 0 otherwise.

(8)

After performing an angular scan in the region Ω, the in-

dexes of the peaks of f (θ ) indicate the angles of arrival of

radiating sources.

3. Lorentzian DoA Algorithm

For real variable x ∈R, the single peak normalized Lorentz

function centered at x0 is defined by [18]:

f (x) =
1
π

β
(x− x0)

2 +β 2
, (9)

with parameters (x0,β ) such that:
∫

R

f (x)dx = 1 .

At the abscissa x0, the function has maximum value of

f (x0) = 1
β π and equals half maximum at x = x0±β , which

makes the Full Width at Half Maximum (FWHM) to be 2β ,

the inflection points xc occur when the second derivative

is null:

∂ 2 f (x)
∂x2 =

−2β

π((x− x0)
2 +β 2)

2 +
8β (x− x0)

2

π((x−x0)
2 +β 2)

3 = 0 .

(10)

This equation has a solution of xc = x0 ± β√
3
, and f (xc) =

3
4πβ . Remark that at the inflection points the magnitude is

reduced, comparatively to the maximum value, by a factor

of 0.75.

Given the condition that the spectral matrix Γ is posi-

tive definite, then σΓ ∈ R+. Let us denote λ ∈ R+ the

scalar function representing the eigenvalues and λmin its

lowest value, the spectrum is considered to be binary

{λn ' λmin,λs}. We search for function that normalizes

the eigenvalue λmin and forces any signal eigenvalue λs
to zero, for this purpose the following version of Lorentz

function is used:

f (λ ) =
1

α(λ −λmin)
2 +1

, (11)

where α is the scaling parameter of the width, this princi-

ple is illustrated in Fig. 2. From the Eq. (11), we need to

spread

FWHM =
2

1.2

1

0.8

0.6

0.4

0.2

0
min c max
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–
)

+
 1

)
a

l
l

m
in

2
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Fig. 2. Lorentzian function with parameters {α,λmin} applied

to the spectrum of operator Γ.

calculate two parameters. The minimum eigenvalue can be

estimated using the power method, first the largest eigen-

value λmax = λ1 is computed, next the λmin is calculated

using the condition number τ = λmax/λmin. The random

vector φ ∈ CN×1 with norm ||φ ||∞ = 1 is chosen, and for

m ≥ 2 the following iterations are performed:

φm+1 = Γφm,

µm = φ+
m φm+1,

φm =
φm+1

φ+
m+1φm+1

.

(12)
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When µm → λmax, the minimum eigenvalue is calculated

by the following equation:

λmin =
λmax

τ
=

λmax

||Γ||2||Γ−1||2
. (13)

The inversion of spectral matrix is required, the scaling

parameter α is necessarily related to a threshold λc that

differentiates the two subsets {λs,λn}. The authors impose

the condition that at abscissa λc, the function equals the

value ε = 10−3, this is equivalent to α(λc −λmin)
2 ' ε−1,

consequently the chosen scaling parameter is given by:

α =
ε−1

(λc −λmin)
2 =

103

(λc −λmin)
2 . (14)

The threshold λc is proposed as the bound of minimum

eigenvalue λmin, this theoretical bound can be calculated

using only the trace of spectral matrix. The theorem of

the smallest eigenvalue bounds [20] is based on mean and

standard deviation of σΓ, before announcing the theorem,

the following variables are defined:

< λ >=
tr(Γ)

N
=

1
N

N

∑
i=1

Γii , (15)

∆λ =

√

< λ 2 > −< λ >2 =

√

tr(Γ2)

N
−

(

tr(Γ)

N

)2

. (16)

Using these two statistics and for matrix with real eigen-

values, the bounds for smallest and largest eigenvalues are

given by the Theorem 1.

Theorem 1: For Hermitian matrix Γ ∈ CN×N (Γ+ = Γ), the

extremum eigenvalues are bounded by:

(

< λ > −∆λ
√

N −1
)

≤ λmin ≤
(

< λ >− ∆λ√
N −1

)

,

(17)
(

< λ > +
∆λ√
N −1

)

≤ λmax ≤
(

< λ > +∆λ
√

N −1
)

.

(18)

The proof is presented in [20]. The smallest signal eigen-

value satisfies λs > λmin, for a relatively large array

(N > 2P). The proposed threshold is given by:

λc =< λ > − ∆λ√
N −1

. (19)

Note: While having only two sensors Γ ∈ C2×2 and even-

tually single source the eigenvalues are exactly λmin =
< λ > −∆λ , λmax =< λ > +∆λ . This special case can

be used in the presence of single source P = 1 and N sen-

sors where the N/2 spectral matrices Γi for i = 1, . . . ,N/2
can be calculated, and theirs eigenvalues using the above

equations are computed.

After describing the theoretical expressions for the couple

{α ,λmin}, the Lorentz function is now adaptive to the vari-

ation of parameters describing the physical system. The

application of the proposed function on self adjoint oper-

ator Γ acts on its eigenvalues f (Γ) = U f (Λ)U+, then we

have the following result.

Proposition: Given Hermitian matrix Γ = K−1XX+, The

Lorentz operator defined by:

f (Γ) =
(

α(Γ−H)2 + IN
)−1

(20)

is an approximation to the projector into the noise subspace,

with H = λminIN , α = 103

(λc−λmin)
2 and λc =< λ > − ∆λ√

N−1
.

Indeed, developing the above equation, based on the rela-

tion f (Γ) = U f (Λ)U+, yields to the decomposition:

f = U
IN

α(Λ−Γ0)2 + IN
U+ =

N

∑
g=1

ugu+
g

α(λg −λmin)
2 +1

=
P

∑
i=1

uiu+
i

α(λi −λmin)
2 +1

+
N

∑
j=P+1

u ju+
j

α(λ j −λmin)
2 +1

'
N

∑
j=P+1

u ju+
j ' Pn . (21)

From numerical experiments, the obtained operator is not

an exact a projector because either the noise eigenvalues are

not normalized and have some fluctuating errors (example

f (λn) = 0.98), or the signal eigenvalues are not totally an-

nihilated (e.g. f (λs) = 10−3). The Algorithm 1 summarizes

the proposed method.

Algorithm 1: Lorentzian operator algorithm

Input: Γ ∈ CN×N (N > P).

1. Compute λmin using power method for example.

2. Compute statistics of operator Γ

m =
Tr(Γ)

N
and s =

√

Tr(Γ2)

N
−m2.

3. Compute parameters λc = m− s√
N −1

,

α =
103

(λc −λmin)2 and H = λminIN .

4. Calculate Pn = (α(Γ−H)2 + IN)
−1

.

4. Results and Discussion

4.1. Simulation Results

In this section, some computer simulations using a config-

uration of Uniform Linear Array of N = 11 sensors consid-

ered isotropic and identical are performed. The available

range for this type of array is Ω = [−π
2 , π

2 ].
The distance between the sensors is half the wavelength

of the carrier waves. It is assumed the presence of P = 4
narrowband and far field sources impinging on array from

directions −80◦, 15◦, 20◦ and 56◦, the number of samples

is set to K = 200. The signals are chosen to be ergodic
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complex and zero mean random processes with uniform

power of 1 W. In all the tests, the perturbative noise is ad-

ditive and also complex zero mean random process uncor-

related between the sensors and independent of s(t). The

noise power is derived from SNR = 20log( 1
σ ). Figure 3

represents an average of L = 100 Monte Carlo trials of

Lorentzian localization function, with N = 11, P = 4, θ =
[−80◦,15◦,20◦,56◦], K = 200, d = λ/2, s(t) ∼ C N (0, I4)
and SNR = 5 dB.
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Fig. 3. Average of 100 trials of the proposed operator.

The obtained result proves that the function has the abil-

ity to separate the sources. In the second test, the pro-

posed operator with several spectra is compared. The au-

thors choose a critical situation where the transmitted sig-

nals and noise signals are equipowered SNR = 0 dB. Fig-

ure 4 presents an average of L = 100 trials of Lorentzian

function against the first three spectra, which are based

on subspace computation with L = 100 trials, N = 11,

P = 4, θ = [−80◦,15◦,20◦,56◦], K = 200, d = λ/2 and

s(t) ∼ C N (0, I4) and SNR = 0 dB.
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Fig. 4. Lorentzian operator against three different spectra.

Lorentzian spectrum is compared with Multiple Signal

Classification (MUSIC) method [23], Ermolaev and Gersh-

man subspace [19] with parameter m = 10, and orthonor-

malized propagator [24]. Schmidt’s method and Ermolaev

subspace are identical in this case. They are successful

in locating all angle indexes, the OPM could locate the

farthest source at 80◦ but did not separate sources at 15◦

and 20◦. Lorentzian spectrum identifies all the AoAs with

higher magnitudes.
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Fig. 5. Lorentzian operator against three different spectra.

In Fig. 5 the presented function is compared with three

other techniques (with the same conditions as in Fig. 4).

The authors realize that Capon’s method (MVDR) [2]–[10]

failed to separate sources at 15◦, 20◦ and the shape of

its localization function is similar to the beamforming [2]

in these conditions. Maximum entropy method [10] with

parameter l = 1 and Lorentzian are approximately the same.
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Fig. 6. Probability of success of Lorentzian operator.

To evaluate the performance with respect to the dimen-

sion of the antenna in Fig. 6 the probability of success

over L = 100 trials with varying number of sensors starting

from N = 4 is presented, with L = 100 trials, P = 4, θ =
[−80◦,15◦,20◦,56◦], K = 200, d = λ/2, s(t)∼C N (0, I4)
and SNR = 5 dB. The result informs that the bound λc
in Eq. (27) is not valid unless the number of sensors N is

about triple the number of sources P, in fact the probability

of detection reaches 90% when N = 12.
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4.2. Experimental Results

In this second part of performance evaluation, the res-

olution power of the proposed operator using underwa-

ter acoustical data obtained from linear array of hydro-

phones [25] is tested. The received echoes are generated

by two acoustic sources. The Table 1 summarizes the data

description.

Table 1

Description of experimental underwater acoustic data

Data Value

Number of hydrophones N = 6
Interelement spacing d = 0.9 m

Length of the array Lλ = 4.5 m

Number of samples K = 4096
Sources wavelength λ = 5.32 m

Average power of data X(t) Tr(Γ)/N = 0.99 W

Eigenvalues of Γ [4.3648, 1.4835, 0.1225,

0.0220, 0.0051, 0.0007]

Number of sources P = 2

Angular step
dθ = 0.1◦ in the range

[−π/2, π/2]

Estimated noise power σ 2 ' 0.0376 W

Estimated powers σ 2
1 ' 0.7188 W and

of sources σ 2
2 ' 0.3092 W

Estimated signal to noise SNR1 ' 25.62 dB and

ratios SNR2 ' 18.30 dB

The noise power or minimum eigenvalue is computed using

the equation:

σ2 =
1
4

6

∑
j=3

λ j . (22)

The powers of sources are calculated using the beamform-

ing as:

fBF(θ ) =
1

N2 a+(θ )Γa(θ ) , (23)

where the values of two largest peaks are approximately

equal to the powers of sources σ 2
1 and σ 2

2 . The imple-

mented steering vector a(θ ) ∈ C6×1 is defined by the rela-

tions:

{

a(θ ) = e−2π jrT λ−1 sin(θ)

r = [0.00,0.90,1.80,2.70,3.60,4.50]
.

The seven DoA spectral techniques are applied to identify

the locations of the acoustic sources which are the Lo-

rentzian operator, MUSIC projector [23], Orthonormal

Propagator (OPM) [24], Ermolaev and Gershman op-

erator [19], Maximum Entropy Method (MEM) [10],

where the operator is computed using the fourth column

of Γ−1, Minimum Variance Distortionless Response op-

erator (MVDR) [2]–[10] and partial propagator method

(PAR) [26]. Figure 7 presents the obtained results [25].
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Fig. 7. DoA localization functions f (θ ) of acoustic sources from

experimental data.

The Lorentzian localization function has the highest val-

ues of peaks and the majority of the spectra present some

deviations of locations. To quantify these fluctuations, in

Table 2 the estimated DoAs using peak detection algorithm

are presented.

Table 2

Estimated DoAs of acoustic sources

Spectral technique
Source 1 Source 2

θ1 [◦] θ2 [◦]

Lorentzian –37.70 58.60

MUSIC –37.00 54.00

OPM –37.00 54.20

EG –37.00 54.00

MEM –40.80 53.80

MVDR –37.50 58.20

PAR –36.90 53.60

Mean values –37.70 55.20

The three subspace techniques MUSIC, OPM and EG

operators identify the acoustic sources with same values

of θ1 and θ2, the MVDR and Lorentzian functions present

the same result where the angular position of the second

source is different than the result of the first three subspace

techniques by 4◦. This difference is reduced for the partial

propagator method where θ2 = 53.60◦. The Maximum En-

tropy Method is efficient if the fourth column is chosen as

reference, however the peak of the first source is deviated

by approximately 3◦.

5. Research Perspectives

The proposed approach for DoA problem is based on band-

pass filter using single shaped Lorentzian function. The

similar solution was proposed using Gaussian function with
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exponential operator [27]. Another solution consists of us-

ing Heaviside function as low pass filter of eigenvalues,

one of the approximations is given by the equation:

f (λ ) = 1− 1
e−α(λ−λc) +1

, (24)

where λc is the threshold such as λP+1 < λc < λP and α is

a constant that controls the rate of decay as illustrated in

Fig. 8 where larger value gives fast transition.

1

0.8

0.6

0.4

0.2

0
-cN P+1 P 1

f(
)

l

Fig. 8. Approximation of rectangular function f (λ ) applied

to eigenvalues of spectral matrix Γ with parameters λc, α =
{1, 3, 5, 7, 9}.

As perspective, a theoretical value of threshold λc and

fast approximation of exponential operator e−α(Γ−λcIN ) may

provide accurate results comparatively to conventional DoA

spectra.

6. Conclusion

In this paper, a new high resolution algorithm for narrow-

band source localization problem using large array is pro-

posed. The main idea consisted of applying Lorentz func-

tion on spectral matrix of received data such as low pass

filter, where the cut-off value is the threshold between sig-

nal and noise eigenvalues, this mechanism requires a priori

knowledge of minimum eigenvalue, which is the index of

function’s peak. Theoretical threshold and scaling parame-

ter of Lorentz function were derived using first and second

order statistics of eigenvalues using only the trace.

Several computer simulations demonstrated the resolution

power of the proposed algorithm when the dimension of

the antenna is relatively large.
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Orléans, France, 2010.

[5] B. Yang, F. He, J. Jin, H. Xiong, and G. Xu, “DOA estimation

for attitude determination on communication satellites”, Chinese J.

Aeronautics, vol. 27, no. 3, pp. 670–677, 2014.

[6] Y.-H. Ko, Y.-J. Kim, H.-I. Yoo, W.-Y. Yang, and Y.-S. Cho, “DoA

estimation with cell searching for mobile relay stations with uniform

circular array”, in Proc. IEEE 20th Int. Symp. Person., Indoor Mob.

Radio Commun., Tokio, Japan, 2009, pp. 993–997.

[7] M. Jiang, J. Huang, W. Han, and F. Chu, “Research on target DOA

estimation method using MIMO sonar”, in Proc. 4th IEEE Conf. on

Indust. Elec. Appl. ICIEA 2009, Xi’an, China, 2009, pp. 1982–1984.

[8] C. Shao-hua, Z. Wei, and L. Hui-bin, “Improved DOA estimation

of underwater target with acoustic cross array”, in Proc. IEEE 11th

Int. Conf. Sig. Process. ICSP 2012, Beijing, China, 2012, vol. 3,

pp. 2071–2074.

[9] I.-K. Rhee and H.-S. Kim, “Improved DOA estimation of correlated

signals in correlated antenna noises environment”, in Proc. Int. Conf.

Inform. Netw. ICOIN 2013, Bangkok, Thailand, 2013, pp. 66–70.

[10] F. B. Gross, Smart Antennas for Wireless Communications with Mat-

lab. New York, NY, USA: McGraw-Hill Professional, 2005.

[11] P. Tan, P. Wang, Y. Luo, Y. Zhang, and H. Ma, “Study of 2D DOA

estimation for uniform circular array in wireless location system”,

Int. J. Comp. Netw. Inform. Secur. (IJCNIS), vol. 2, no. 2, pp. 54–60,

2010.

[12] L. Liu, Q. Ji, and Y. Jiang, “Improved Fast DOA Estimation Based

on Propagator Method”, in Proc. APSIPA Ann. Summit and Conf.

APSIPA ASC 2011, Xi’an, China, 2011.

[13] Y.-H. Chen and Y.-S. Lin, “Fourth-order cumulant matrices for DOA

estimation”, IEE Proc. Radar, Sonar and Navig., vol. 141, no. 3,

pp. 144–148, 1994.

[14] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via

rotational invariance techniques”, IEEE Trans. Acoust., Speech and

Sig. Process., vol. 37, no. 7, pp. 984–995, 1989.

[15] J. Dai, W. Xu, and D. Zhao, “Real-valued DOA estimation for uni-

form linear array with unknown mutual coupling”, Sig. Process.,

vol. 92, no. 9, 2012.

[16] X. Mestre and M.-A. Lagunas,“Modified subspace algorithms for

DoA Estimation with large arrays”, IEEE Trans. Sig. Process.,

vol. 56, no. 2, pp. 598–614, 2008. doi: 10.1109/TSP.2007.907884.

[17] Y. Wang, G. Leus, and A. Pandharipande, “Direction estimation

using compressive sampling array processing”, in Proc. IEEE/SP

15th Worksh. on Statis. Sig. Process. SSP 2009, Cardiff, UK, 2009,

pp. 626–629. doi: 10.1109/SSP.2009.5278497.

[18] S. A. Clough and F. X. Kneizys, “Convolution algorithm for the

Lorentz function”, Applied Optics, vol. 18, no. 13, pp. 2329–2333,

1979.

[19] V. T. Ermolaev and A. B. Gershman, “Fast algorithm for minimum-

norm direction-of-arrival estimation”, IEEE Trans. Sig. Process.,

vol. 42, no. 9, pp. 2389–2394, 1994. doi: 10.1109/78.317860.

[20] H. Wolkowicz and G. P. H. Styan, “Bounds for eigenvalues using

traces”, Linear Algebra and its Applications, vol. 29, pp. 471–506,

1980.

[21] H. Krim and M. Viberg„ “Two decades of array signal process-

ing research: the parametric approach”, IEEE Sig. Process. Mag.,

vol. 13, no. 4, pp. 67–94, 1996.

[22] Y. Khmou, S. Safi, and M. Frikel, “Comparative study between sev-

eral direction of arrival estimation methods”, J. Telecommun. Inform.

Technol., no. 1, pp. 41–48, 2014.

[23] R. O. Schmidt, “Multiple emitter location and signal parameter esti-

mation”, IEEE Trans. Antenn. Propag., vol. 34, no. 3, pp. 276–280,

1986.

[24] S. Marcos, A. Marsal, and M. Benidir, “The propagator method

for source bearing estimation”, Sig. Process., vol. 42, no. 2,

pp. 121–138, 1995.

[25] P. Stoica and R. Moses, Spectral Analysis of Signals. Upper Saddle

River, NY, USA: Prentice-Hall, 2005.

104



Lorentzian Operator for Angular Source Localization with Large Array

[26] J. Chen, Y. Wu, H. Cao, and H. Wang, “Fast algorithm for DOA

estimation with partial covariance matrix and without eigendecom-

position”, J. Sig. Inform. Process., vol. 2 no. 4, pp. 266–269, 2011.

[27] Y. Khmou, S. Safi, and M. Frikel, “Exponential operator for bearing

estimation”, Int. J. Adv. Sci. Technol. (IJAST ), vol. 74, pp. 1–10,

2015.

Youssef Khmou obtained the B.Sc. degree in Physics and

M.Sc. degree from polydisciplinary faculty, in 2010 and

from Faculty of Science and Technics Beni Mellal, Mo-

rocco, in 2012, respectively. Now he is Ph.D. student and

his research interests include statistical signal and array pro-

cessing and statistical physics.

Email: khmou.y@gmail.com

Department of Mathematics and Informatics

Beni Mellal, Morocco

Said Safi received the B.Sc.

degree in Physics (option

Electronics) from Cadi Ayyad

University, Marrakech, Mo-

rocco in 1995, M.Sc. degree

from Chouaib Doukkali Uni-

versity and Cadi Ayyad Univer-

rsity, in 1997 and 2002, res-

pectively. He has been a Pro-

fessor of information theory

and telecommunication systems

at the National School for applied Sciences, Tangier, Mo-

rocco, from 2003 to 2005. Since 2006, he is a Professor

of applied mathematics and programming at the Faculty

of Science and Technics, Beni Mellal, Morocco. In 2008

he received the Ph.D. degree in Telecommunication and

Informatics from the Cadi Ayyad University. His general

interests span the areas of communications and signal pro-

cessing, estimation, time-series analysis, and system iden-

tification – subjects on which he has published 35 jour-

nal papers and more than 70 conference papers. Current

research topics focus on transmitter and receiver diver-

sity techniques for single- and multi-user fading commu-

nication channels, and wide-band wireless communication

systems.

E-mail: safi.said@gmail.com

Department of Mathematics and Informatics

Beni Mellal, Morocco

Miloud Frikel received his

Ph.D. degree from the cen-

ter of mathematics and scien-

tific computation CNRS URA

2053, France, in array pro-

cessing. Currently, he is with

the GREYC laboratory (CNRS

URA 6072) and the ENSI-

CAEN as Assistant Professor.

From 1998 to 2003, Dr. Frikel

was with the Signal Processing

Lab, Institute for Systems and Robotics, Institute Superior

Tecnico, Lisbon, as a researcher in the field of wireless lo-

cation and statistical array processing, after been a research

engineer in a software company in Munich, Germany. He

worked in the Institute for Circuit and Signal Processing

of the Technical University of Munich. His research inter-

ests span several areas, including statistical signal and array

processing, cellular geolocation (wireless location), space-

time coding, direction finding and source localization, blind

channel identification for wireless communication systems,

and MC-CDMA systems.

E-mail: mfrikel@greyc.ensicaen.fr

GREYC UMR 6072 CNRS

Ecole Nationale Supérieure d’Ingénieurs

de Caen (ENSICAEN)
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