
Paper 100 Gb/s Data Link Layer –

from a Simulation to FPGA

Implementation

Łukasz Łopaciński1, Marcin Brzozowski2, Rolf Kraemer2, Steffen Buechner1, and Jörg Nolte1

1 Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
2 Innovations for High Performance Microelectronics GmbH, Frankfurt (Oder), Germany

Abstract—In this paper, a simulation and hardware imple-

mentation of a data link layer for 100 Gb/s terahertz wireless

communications is presented. In this solution the overhead of

protocols and coding should be reduced to a minimum. This

is especially important for high-speed networks, where a small

degradation of efficiency will lower the user data throughput

by several gigabytes per second. The following aspects are

explained: an acknowledge frame compression, the optimal

frame segmentation and aggregation, Reed-Solomon forward

error correction, an algorithm to control the transmitted data

redundancy (link adaptation), and FPGA implementation of

a demonstrator. The most important conclusion is that chang-

ing the segment size influences the uncoded transmissions

mostly, and the FPGA memory footprint can be significantly

reduced when the hybrid automatic repeat request type II is

replaced by the type I with a link adaptation. Additionally,

an algorithm for controlling the Reed-Solomon redundancy

is presented. Hardware implementation is demonstrated, and

the device achieves net data rate of 97 Gb/s.

Keywords—ARQ, FEC, frame aggregation, HARQ, link adap-

tation, Reed-Solomon FEC, segmentation.

1. Introduction

Within the last two years, a few new approaches for

100 Gb/s wireless communication have been proposed. Re-

search on physical transceivers and baseband processing

changed the state of the art in the targeted area. Compo-

nents required to modulate the 100 Gb/s wireless signal in

the terahertz band are close to release in engineering sam-

ples. In [1] a 100 Gb/s baseband signal has been sent over

a 237.5 GHz link. Similar results are shown in [2]. More

teraherz (THz) communication activity on the physical layer

is documented in [3]–[6]. In this paper, a data link layer for

a wireless 100 Gb/s system is proposed. The designed so-

lution is 14 times faster than the state-of-the-art 802.11ac

(5 GHz) and 802.11ad (60 GHz) WLANs shown in [7].

Even if the achievement in 100 Gb/s wireless communica-

tion is impressive, the PHY circuit, baseband processing,

and data link layer have not been integrated yet. To the

authors best knowledge, the fully functional data link layer

dedicated for 100 Gb/s wireless THz application has not

been shown yet.

2. Related Work

Many research efforts have been addressed to highly effi-

cient wireless protocols. A data link layer goodput anal-

ysis is a very popular topic, especially for WLAN. Pre-

sented methodology for frame segmentation is very simi-

lar to efforts presented by T. Li et al. in [8], where seg-

mentation is deeply investigated. Li proves that a frame

fragmentation may increase protocol efficiency. There are

many authors, who publish papers similar work, for ex-

ample [9]–[11]. They consider possible improvements for

the WLANs, mostly by using fragmentation and aggrega-

tion. The main difference is that in this paper, authors

are strongly focused on ad hoc connections for short dis-

tances with the highest possible efficiency (over 95%), and

100 Gb/s data rate.

Another deeply investigated topic is an automatic repeat

request (ARQ). Similar work can be found in [12], [13], but

this work focused on the ARQ concatenated with forward

error correcting codes (FEC) [14]. Such technique is called

hybrid-ARQ (HARQ) [15].

There are only a few wireless transceivers working at high-

speed data rates. For example, paper [16] introduces a sys-

tem for wireless communication working at the 60 GHz

band. However, the supported data rate of 4 Gb/s is still

much lower than authors’ goal: 100 Gb/s wireless commu-

nication. The core task of this paper is to test adaptation

algorithms for forward error correction. This allows con-

trolling the redundant data in view of the channel quality.

3. Work Details

In this section, authors explain how the results are gener-

ated. Next, the employed simulation environment and the

emulated wireless channel are explained. After that, all

implemented techniques used in the research are described.

At the end, the FPGA prototype is presented.

3.1. Simulation Model

The Matlab simulations of the planned system were per-

formed, before the real demonstrator was implemented.

The simulations are using the same algorithms to the

90



100 Gb/s Data Link Layer – from a Simulation to FPGA Implementation

solutions implemented in the hardware. The field pro-

grammable gate arrays (FPGAs) are used for the final

demonstrator.

Frame
generator

TX RX

Statistics
calculation

Wireless
channel

(Markov Chain)

Acknowledge
generator

1.

8.

4.
5.

2. Data path

7. Acknowledge
path

6. Acknowledge
path

3. Data path

Fig. 1. A Matlab model is used to generate transmission statistics.

The receiver uses an acknowledge generator to build the ACK-

frame. The transmitter uses the frame for retransmissions and

statistic calculations.

Figure 1 explains the simulation model. Two devices are

communicating by an emulated wireless channel. They are

exchanging data frames (the data path) and confirmation

messages (the acknowledge path). Every successfully re-

ceived data frame is confirmed by the receiver device (RX).

That makes the data exchange process reliable, because the

transmitter (TX) can repeat all lost frames. This process is

called an automatic repeat request (ARQ). The core func-

tion of the ARQ process is generation of the acknowledge

frame (ACK) and sending it to the transmitter device. Addi-

tionally, the TX device can calculate communication statis-

tics. Such a mechanism allows estimating the efficiency of

the implemented algorithm.

3.2. Wireless Channel Emulation

In this subsection, the implementation of the wireless chan-

nel used in the simulation (according to Fig. 1) is intro-

duced. Such a two state Markov chain for errors emula-

tion are used, because this solution requires two transition

statistics, which defines the channel. The probabilities of

the transition define a bit error rate and error length in

bits. It does not use any physical aspects of the wireless

transmission. For testing the data link layer it is acceptable,

because only the characteristic and distribution of the errors

are necessary. The cause is unimportant, until the param-

eters describe the channel moreover correctly. A detailed

description of the Markov chain can be found in [11].

3.3. Frame Segmentation and Aggregation

A frame size and a bit error rate (BER) have a significant

impact on the wireless communication efficiency. When

the payload is longer in the frame, then less overhead is

generated by the headers and checksums. Transmission is

more efficient. Unfortunately, long frames are more vul-

nerable to transmission errors. This is explained in Fig. 2.

If the frames become longer, then the probability that some

bits in the frame will be corrupted is higher. The frame

BER = 10
-3

BER = 10
-4

BER = 10
-5

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
1 2 3 4 5 6 7 8

Frame size [KB]

F
ra

m
e 

er
ro

r 
ra

te

Fig. 2. A frame error rate in view of the frame size. If frame is

longer, then higher is the probability that an error will occur dur-

ing the transmission and the frame will be lost. Due to this aspect,

shorter frames are preferred in a noisy wireless environment.

1024 B 1024 B 1024 B 1024 B

1 4096

Payload:

4096 B

1 4096

1024 1025 2048 2049 3072 3073

Segment 1 Segment 3Segment 2 Segment 4

Segmented payload:

Fig. 3. An example of segmentation for a frame payload. The

example payload is chopped to four segments of equal length.

The shorter segments are more efficient during a transmission in

a noisy channel.

can be split to independent segments, to improve the ro-

bustness and the communication efficiency. The splitting

process is explained in Fig. 3. In the example, a single 4 KB

Preamble Header Payload
CRC
FEC

Error bits

100% data lost
(Unrecoverable data due to error bits)

Preamble Header Payload Payload Payload
CRC
FEC

CRC
FEC

Error bits

CRC
FEC

33% data lost 67% data OK

(a)

(b)

Fig. 4. An explanation how the segmented frame can improve

the total efficiency: (a) classical frame, (b) frame with subframes.

In a case of bit errors in a classical frame, the whole payload has

to be retransmitted. If the segmented frame is used, then only

invalid data part is rejected and there is no need to retransmit the

whole frame, but just only the defected segment.

91



Łukasz Łopaciński, Marcin Brzozowski, Rolf Kraemer, Steffen Buechner, and Jörg Nolte

frame is split to four 1 KB segments. Now, the individual

segments are acting like subframes (frame fragmentation).

Every segment is using an individual header and checksum,

but the preamble is shared (frame aggregation). It means

that the errors in one segment do not influence the payload

in the other segments. That improves the communication

efficiency (Fig. 4). In case of a bit error, only the defected

part must be repeated but not the complete frame. In this

case, the default frame size is 64 KB, and is segmented to

64 fragments. In a single ARQ session 64 frames are trans-

ported (4 MB). The FPGA implementation allows changing

the frame settings in the fly, and only the on-chip memory

buffers are limiting the flexibility of the frame format.

3.4. Automatic Repeat Request Process

As was already mentioned, the TX and RX devices are

working in a closed feedback loop. This loop is called

ARQ. Every frame sent by the TX device is locally copied

to the TX ARQ buffer (Fig. 5). If the RX will not acknowl-

TX RX

TX ARQ
buffer

Add 1

Add 2

Add 3

Add 4

Frame 1

Frame 2

Frame 3

Frame 3

Frame 4

Del 1,2,4
Ack 1,2,4

Ack 3
Del 3

Read 3

Fig. 5. An automatic repeat request process (ARQ). All transmit-

ted frames are copied to the temporary TX ARQ buffer. If any

frame will be lost during the transmission, then the transmitter

reads the lost data from the buffer and starts the retransmission.

edge all of the sent frames, then the TX reads the lost frame

from the buffer and makes retransmission. The retransmis-

sion process repeats until the positive ACK for the frame

is received. If the ACK frame is lost, then the transmitter

sends an ACK-request frame after a predefined timeout. In

this case, this procedure have been adopted to proposed

implementation. Instead of acknowledging of full frames,

every single segment (subframe) is acknowledged. It means

that the ARQ process works on frame fragments but not on

full-frames. For designed FPGA prototype, an additional

future is used. The implementation uses a zero-copy ap-

proach. The transmitted data is not copied to a dedicated

buffer, but a pointer to a memory segment is requested

from a higher layer in a case of retransmission. This saves

energy and reduces memory footprint for the FPGA.

3.5. Forward Error Correction

The FEC algorithms are reducing the number of retransmit-

ted frames in the ARQ process. That significantly improves

the transmission efficiency. The transmitter is sending the

data with some redundant bytes. In this work, the Reed-

Solomon (RS) codes are used, because of relatively high

throughput. Due to many complicated aspects, the detailed

introduction to FEC is omitted in this work, and in-depth

details can be found in [18], [19]. The authors will just

explain how the RS is building the blocks. It is impor-

tant to understand results of our paper. In the simulation

three RS flavors are used: RS(255, 249), RS(255, 239),

and RS(255, 223). The numbers are defining the RS block

size (255 bytes in this case) and the payload size (249, 239

or 223 bytes). It means that the redundant information

is 6, 16, or 32 bytes long. This is explained in Fig. 6.

The redundant bytes are used for error corrections. If more

redundant data is produced, then more error symbols can

be corrected. The RS(255, 249) can correct up to 3 bytes

in the block, RS(255, 239) 8 bytes, and the RS(255, 223)

16 bytes [18]. The aim is to find a trade-off between the re-

dundancy and the payload, so the transmission process is ef-

ficient. The VHDL implemented FEC engine for the FPGA

is more flexible, and more RS flavors is available. The im-

plemented FPGA FEC engine is supporting any coding in

a range of 2–18 redundancy bytes per a single RS block.

It means that the following coding schemes are supported:

(255, 237), (255, 239), (255, 241), (255, 243), (255, 245),

(255, 247), (255, 249), (255, 251), and (255, 253). Cod-

ing can be adjusted on the fly, and this feature is used

by the proposed adaptation algorithm to choose the opti-

mal coding for the current wireless channel condition. In

presented case, the higher coding granularity improves the

overall performance.

RS(255, 249)

RS(255, 239)

RS(255, 223)

249 bytes

239 bytes

223 bytes

Payload Redundancy

Redundancy

Redundancy

6 b

16 b

32 bytes

Fig. 6. The Reed-Solomon (RS) blocks. The algorithm is build-

ing the blocks of size of 255 bytes in presented case. The redun-

dancy is adjustable. If more redundancy bytes are used, then less

payload is carried by the segments. More redundancy bytes allow

correcting more errors after the transmission.

The RS calculation is the most calculation demanding op-

eration performed in the FPGA logic. The encoders and

decoders occupy 55% of the FPGA logic resources. To

support the targeted 100 Gb/s stream, eighty encoders and

eighty decoders are in use.

92



100 Gb/s Data Link Layer – from a Simulation to FPGA Implementation

3.6. Hybrid ARQ

Any combination of the ARQ and FEC is called Hybrid-

ARQ (HARQ). Two mainly investigated in the paper

HARQ methods are HARQ type I and II. The HARQ-I

adds error detection code and FEC to every packet at every

condition. The HARQ-II sends the FEC data during the re-

transmission only. In such a case, the error correction data

is not overloading the link during the regular transmission

(Figs. 7 and 8). This can introduce some improvements in

efficiency. We answer in the next paragraph, which strat-

egy is better for our protocol. A detailed description of the

HARQ-I and II can be found in [18] and [20].

TX RX

FEC

FEC

Data

Data

Frame transmission:

Frame transmission:

NACK: frame lost

ACK: frame OK

Run FEC algorithm,
check CRC,

if error detected,
discard the frame,

send NACK.

Run FEC algorithm,
check CRC,
if frame OK,
send ACK.

Fig. 7. The HARQ-I scheme. The transmitter always sends the

frame with a forward error correction data. The retransmitted

frame is a mirror copy of the original frame.

TX RX

Data

FEC

Frame transmission:

FEC transmission:

NACK: frame lost

ACK: frame OK

CRC not match,
error detected,

write the frame to memory,
send NACK.

Read the frame from memory,
fix the frame,

recheck the CRC,
CRC match,
send ACK

Fig. 8. The HARQ-II scheme. The transmitter usually sends the

frame without forward error correction data. The standard frame

is not extended by the FEC field. In a case when the frame is lost,

then the transmitter sends the FEC only. The frame data is not

retransmitted. The HARQ-II reduces the retransmission overhead

in compare to the HARQ-I.

3.7. FPGA Demonstrator

The hardware demonstrator consists of two hardware boards

(Fig. 9). The Tilera server is a dedicated 72 cores proces-

sor employed for frames segmentation and fast memory

access. The FPGA is a calculation coprocessor supporting

CRC, FEC calculations, and frames aggregation. The main

state machine responsible for data link layer is run on the

Tilera server. The FPGAs and sever are connected with

10 Gb/s Ethernet optical fiber. For now, the architecture

supports up to 80 Gb/s with two FPGA boards (interfaces

FPGA 0

FPGA 1

Tilera

server
To baseband

Fig. 9. The demonstrator overview.

constraints). Generally, the Virtex 7 FPGA can process up

to 100 Gb/s in a back-to-back connection (Fig. 10). The

baseband processor is not finished yet. Thus, authors can

test the processor only in a loopback mode. A single, log-

ical FPGA processing pipeline (lane) is shown in Fig. 11.

Fig. 10. The FPGA demonstrator.

Ethernet
input

Ethernet
output

CRC
calc.

Parallel
FEC
calc.

Fig. 11. A single processing lane (logical pipeline).

3.8. Parallel FPGA Processing

There is no possibility to process the 100 Gb/s stream

in a single processing pipeline (lane) [14]. Even if one

of the fastest FPGA developments kit is used, the stream

processing have to be divided and calculated in parallel.

For that purpose, a parallel calculation array is imple-

mented. The array calculates 640 bits @ 156.25 MHz. In-

ternally the 640-bits-word is organized in ten sub-words

processed by ten calculation lanes (Fig. 12). Every lane

runs at 10 Gb/s, and is connected to two 10 Gb/s Ether-

net ports (data input and data output). Such a processor

uses 294115 lookup-tables and 239019 flip-flops. It is

93



Łukasz Łopaciński, Marcin Brzozowski, Rolf Kraemer, Steffen Buechner, and Jörg Nolte

Lane-9 Lane-9

Lane-1 Lane-1

Lane-0 Lane-0

RS-0

RS-0

RS-0

RS-7

RS-7

RS-7

Fig. 12. The parallel FEC calculation array implemented in the

FPGA logic.

respectively 65% and 27% of the total resources avail-

able in the Virtex 7-690T FPGA. The slices occupation is

equal to 80%.

4. Results

4.1. Transmission Limiting Factors

The authors have performed transmission experiments and

recorded the most important parameters (the overall effi-

ciency, the percentage of successfully received segments,

the percentage of successfully received frame headers, the

total number of acknowledge frames, the number of time-

outs, and the total number of physical layer turnarounds).

That allows to investigate, which factors reduce through-

put in test system. Additionally, the retransmission seg-

ment size can be adjusted in a range of 32 to 65536 bytes.

A following assumption can be done after analysis of the

results. The ACK-frame has to be as short as it is possi-

ble and always encoded with robust coding. Practically it

means that the ACK-frame should be encoded with a code

rate lower that the code rate of the data segments (a lower

code rate means improved error correction). This reduces

the total number of lost ACK-frames, timeouts, and PHY

turnarounds. After that, only the loss of the data segments

limits the throughput. Intensive FEC coding and segmenta-

tion for the data segments makes no sense without improved

reliability of the ACK-frame. Figures 13 and 14 demon-

strate the used methodology for uncoded and encoded trans-

missions. In both cases the throughput is limited by lose

of the data segments but not by the ACK-frames. The total

number of timeouts and the PHY turnarounds are relatively

low during the simulation.

user data throughput [%]

delivered data segments [%]

delivered frame headers [%]

number of ACK timeouts

number of ACK-frames

number of PHY turnarounds

10
-7

10
-4

10
-6

10
-3

10
-5

10
-2

Error rate

100

90

80

70

60

50

40

30

20

10

0

Fig. 13. Limiting factors of the transmission. The data segments

are uncoded. The frame headers are delivered with a relatively low

error rate. The goodput is limited by lose of the data segments.

user data throughput [%]

delivered data segments [%]

delivered frame headers [%]

number of ACK timeouts

number of ACK-frames

number of PHY turnarounds

10
-7

10
-4

10
-6

10
-3

10
-5

10
-2

Error rate

100

90

80

70

60

50

40

30

20

10

0

Fig. 14. Limiting factors of the transmission. The data segments

are coded with RS(255, 223). The error rate of the data segment is

strongly reduced as compared to uncoded transmission simulation.

The ACK-frame length is depended from the total number

of successfully received segments in a single ARQ session

(positive acknowledgment). If the data frame segmentation

is increased, then many small parts have to be sent and

acknowledged. That increases the ACK-frame size. Unfor-

tunately, too long ACK-frames cannot be delivered errorless

and are limiting the throughput. Instead of the efficiency

improvement, degradation is observed. The ideal solution

94



100 Gb/s Data Link Layer – from a Simulation to FPGA Implementation

is to keep the ACK-frame size smaller than the size of the

data segment. An ACK-frame compression is needed to

achieve that in our case. The three solutions were consid-

ered: a bit map coding, and two versions of a sequence

number range coding. A single uint16 value and a bit map

are sent in the bit map scheme. The uint16 value defines

the first acknowledged segment number, and the bit map

defines all next values. The bit position defines an offset

and the bit value defines if the segment is acknowledged

or not.

uncompressed ACK
bit map ACK

range-coded ACK (16 bits)
range-coded ACK (15 bits)

8000

7000

6000

5000

4000

3000

2000

1000

0

A
C

K
-f

ra
m

e 
si

ze
 [

b
y

te
s]

10
-7

10
-4

10
-6

10
-3

10
-5

10
-2

Error rate

Fig. 15. The maximal ACK-frame sizes during the simula-

tion. Three types of the ACK-frame compression methods are

presented. The compressed ACK-frame is significantly shorter

and is much more robust during the transmission.

The second and third methods send only a range of ad-

dresses of the acknowledged segments. In some cases that

may lead to an extended frame size. All three methods

were investigated, and the results are shown in Fig. 15.

4.2. Optimal Segment Size

If the problem of the disadvantageous ACK-frame size is re-

duced, then additional improvements for the data segments

can be done. First of all, the influence of the segment size

is considered. By reducing the segment size, the efficiency

can be improved on “bad” channels. From the other side,

more segments have to be sent to transmit the same data.

Every segment is equipped with an individual header and

checksum. This induces overhead. Additionally, enabling

the FEC introduces some additional issues. This happens

because block codes are used (in this case the RS block size

is equal to 255 bytes). This introduces additional indirect-

segmenting. The errors in each RS block are corrected

individually, and each RS block acts like an independent

sub-segment. In Fig. 16 the data segment size is investi-

gated. It can be observed that the optimal segment size for

error rates below 10−6 is in the range of 2 to 4 KB (16 to

32 segments for a 64 KB frame size). When the error rate

increases, then the segment size should be reduced. Five

hundred and more segments are required for links with an

error rate = 10
-6

error rate = 10
-6

error rate = 10
-6

error rate = 10
-6

100

90

80

70

60

50

40

30

20

10

0
0 50 100 150 200 250 300 350 400 450 500

Number of segments

E
ffi

ci
en

cy
 [

%
]

Fig. 16. The data link layer efficiency vs. the data segment size

vs. an error rate. The data segments are uncoded. If the error

rate increases, then smaller segments are preferred.

error rate = 10 RS(255, 223)
-7

error rate = 10
-3

error rate = 1.7.10
-3

RS(255, 223)

error rate = 3.1.10
-3

RS(255, 223)

error rate = 5.6.10
-3

RS(255, 223)

90

80

70

60

50

40

30

20

10

0
0 50 100 150 200 250 300 350 400 450 500

Number of segments

E
ffi

ci
en

cy
 [

%
]

RS(255, 223)

Fig. 17. The data link layer efficiency vs. the data segment

size vs.an error rate. The data segments are coded with the

RS(255, 223). The RS encoded frames are less sensitive to the

segment size that the uncoded frames.

4 KB no-coding
1 KB no-coding

0.25 KB no-coding

4 KB RS(255, 223)

0.25 KB RS(255, 223)
1 KB RS(255, 223)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

90

80

70

60

50

40

30

20

10

0

E
ffi

ci
en

cy
 [

%
]

100

Bit Error Rate

Fig. 18. The data link layer efficiency vs. the data segment size

vs. an error rate. The uncoded and RS coded transmissions are

plotted in one figure. The RS encoded frames are less sensitive

to the segment size than the uncoded frames.

95



Łukasz Łopaciński, Marcin Brzozowski, Rolf Kraemer, Steffen Buechner, and Jörg Nolte

error rate higher than 10−5. It means that the transmis-

sion without coding is very sensitive to the segment size.

Dynamic change of this parameter can introduce some sig-

nificant improvements to the efficiency. Slightly different

situation can be observed, when RS coding is used. This

situation is shown in Fig. 17. The transmission with RS

coding is less sensitive to the segment size. That means

that, advantages of the variable segment size can be reduced

after enabling the coding. In presented FPGA demonstra-

tor, the implementation of this feature in the first iteration is

omitted. Authors presume that the block-FEC can be a good

substitute of the variable segment size. To get better feel-

ing of this observation, more simulations were performed

(Fig. 18). The improvement of the variable segment size

for the RS-coded transmissions is marginal.

4.3. Dynamic FEC Redundancy

In this subsection, a dynamic algorithm to find a trade-off

between the FEC coding and the demanded error correc-

tion performance is proposed. The algorithm analyses the

number of successfully delivered data segments and the

number of corrected errors in the RS blocks. If the effi-

ciency is degraded by loses of the data segments, then the

algorithm increases the FEC coding. This solution is un-

complicated, but it is important to define a threshold, when

the FEC mode should be changed. In this paper, the thresh-

olds are set to 249/255 ≈ 97.6%, 239/255 ≈ 93.7%, and

223/255≈ 87.5%. If the data delivery efficiency is below

the given values, then the corresponding RS code is used.

It tries to find a compromise between the RS overhead and

the rate of the lost segments. The thresholds correspond to

the code rates and define upper bounding of the goodput.

In this solution, an error statistics of all decoded RS blocks

are calculated, and all corrupted segments are categorized

to some groups. Every error category can be corrected by

a different RS code. If the statistic is known, then the best

RS code can be chosen for all future transmissions. Re-

no-coding
RS(255, 249)
RS(255, 223)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

90

80

70

60

50

40

30

20

10

0

E
ffi

ci
en

cy
 [

%
]

100

Error rate

RS-dynamic

Fig. 19. The dynamic FEC algorithm results. The probability

P(C) is equal to 0.5. The adaptive algorithm chooses the optimal

coding and maximizes the goodput.

10
-2

10
-6

10
-4

10
-3

10
-7

10
-5E

rr
o

r 
ra

te

0 5 10 15 20 25

Simulation point

Fig. 20. An example characteristic used for evaluation of adap-

tive algorithms. The error rate is a permutation in a range of

[10−7; 10−2].

sults of the algorithm are shown in Fig. 19. It may happen

that the channel changes so rapidly that this solution will

work too slowly. To minimize this factor, HARQ-II can

be applied. After that, any mistake of the adaption algo-

rithm can be corrected by the FEC data sent in the next

ARQ session. An additional simulation was performed to

test how the algorithm performs in rapidly changing en-

vironment (Fig. 20). Results of this simulation are pre-

sented in Table 1. Nine algorithms were tested. The best

performance is achieved by using adaptive redundancy with

the HARQ-I scheme. This algorithm is relatively easy to

implement in the FPGA hardware. The HARQ-II scheme

is giving similar results, but the complexity of the HARQ-

II is higher. The HARQ-I algorithm achieves also quite

high efficiency. It is possible to improve the switching

logic in the future. For example, a proportional-integral-

derivative (PID) or a fuzzy logic controller can be em-

ployed. These controllers can rely not only on the instan-

taneous value, but can track more parameters on a longer

period.

Table 1

Different algorithms vs. the rapidly changing

channel (Fig. 20)

Algorithm
Average Peak

efficiency [%] efficiency [%]

No coding (ARQ) 54.72 98.47

RS(255, 249) (HARQ I) 74.69 96.23

RS(255, 239) (HARQ I) 79.84 92.43

RS(255, 223) (HARQ I) 79.19 86.20

Adaptive RS(HARQ I) 79.66 98.33

HARQ II with RS(255, 223) 74.82 98.33

Adaptive RS with HARQ II 79.57 98.13

Adaptive RS (modified) 83.05 96.28

Adaptive RS with HARQ II
82.46 96.10

(modified)

96



100 Gb/s Data Link Layer – from a Simulation to FPGA Implementation

4.4. Performance of the FPGA Implementation

The back-to-back connected FPGAs and the implemented

wireless channel emulator are used to test the algorithms in

a real hardware. Presented FPGA-implementation accepts

a BER up to 2 · 10−3. Above this value, the RS engine

cannot fix errors in the stream, and the performance rapidly

drops. In some cases, the wireless channel may produce

BER higher than 2 ·10−3. The hardware-implemented data

link layer cannot operate in such conditions, and the device

will lose the link. To improve the error correction results,

an extended version of FEC engine is proposed.

In the simulation, the authors presume that the engine

must support at least the RS(255, 223) with code rate

R ≈ 0.875. The used RS VHDL-implementation cannot

support a lower coding than the RS(255, 237) with code

rate R ≈ 0.929. Thus, the achieved FPGA results are worse

than simulated. There is a possibility to use shortened RS

codes to decrease the code rate of the produced stream.

That is the easiest approach to deal with the problem. The

second solution is to redesign the implemented RS en-

tity, that it can natively support the RS(255, 223) [21].

The both approaches are compared in terms of consumed

logic area (Fig. 21) and error correction performance

(Figs. 22 and 23).

The implementation of the RS(127, 109, 8-bit symbol)

is realized by shortening the RS(255, 237) by remov-

4000

3500

3000

2500

2000

1500

1000

500

0
RS(255, 223) RS(255, 239) RS(127, 109) RS(59, 41)

V
ir

te
x
 7

 l
o
o
k
u
p
-t

ab
le

s

Fig. 21. Consumed logic area by the proposed solutions.

10
-3

10
-3

10
-6

10
-4

10
-2

10
-2

10
-5

RS(255, 223) k = 0.875
RS(127, 109) k = 0.858
RS(41, 59) k = 0.695

Input BER

O
u
tp

u
t 

B
E

R

Fig. 22. Error correction performance of the proposed coding

schemes.

10
-4

10
-3

10
-2

100

90

80

70

60

50

40

30

20

10

0

T
h

ro
u

g
h

p
u

t 
[G

b
/s

]

BER

RS(255, 237)
RS(255, 223)
RS(127, 109)
RS(41, 59)

Fig. 23. Simulated throughput of the FPGA demonstrator with

the improved FEC engine.

ing 128 symbols from the message part of the codeword.

Practically, it is achieved by using two hardware entities

of the default code, and by multiplexing/switching the

data input and output interfaces (Fig. 24). Every coder

calculates half of the data block, and the rest of the symbols

are filled with zeroes.

Data in Data out

RS(255, 237)

RS(255, 237)

Fig. 24. Implemented code shortening.

The RS(59, 41, 8-bit symbol) is a shortened version of the

RS(255, 237) by removing 196 data symbols. Practically

those are four calculation entities switched four times dur-

ing a single codeword coding. These uncomplicated opera-

tions improve the error correction performance without any

significant system complications. Especially, the resources

used for implementation of the RS(255, 223) can be re-

duced by around 33%, when the coding is replaced with the

proposed RS(127, 109). This simplification causes a small

loss of the error correction performance. The redundancy

symbols are spread more uniformly over the frame and the

redundancy cannot be used as flexible as during processing

of the full-length codewords. The error correction process

is focused on shorter blocks, and some of the redundant

information is not used efficiently.

5. Future Work

We experiment with interleaving and multiplexing matrixes

to increase error correction performance of our implemen-

tation (Fig. 25). The assumption is to improve decoding

performance of the RS(255, 239) and to achieve error

correction performance similar to the RS(255, 223). The

proposed decoder must be mathematically analysed and

97



Łukasz Łopaciński, Marcin Brzozowski, Rolf Kraemer, Steffen Buechner, and Jörg Nolte

M

N

M
-1

N
-1

RS(255, 239)

RS(255, 239)

RS(255, 239)

Fig. 25. Experimental RS decoder.

it have to be proven, that the proposed structure requires

less calculation operations than the RS(255, 223). Up to

now, achieved results are disappointing. The solution is

inefficient against single, uniformly distributed bit errors

(e.g. AWGN channel). In such a case, authors cannot tune

the structure to get any optimistic results. Usually, more

power than a single RS(255, 239) decoder is consumed,

and the increase of the error correction performance is

marginal.

1 2 3 4 5 6 7 8 9 10

50

40

30

20

45

35

25

15

10

5

0

P
er

ce
n
t 

o
f 

o
cc

u
rr

en
ce

 [
%

]

Error length [bits]

Fig. 26. Example error characteristic.

10
-3

10
-3

10
-6

10
-6

10
-7

10
-7

10
-8

10
-8

10
-4

10
-4

10
-2

10
-2

10
-5

10
-5

RS(255, 223)
RS(255, 239)

Input BER

O
u

tp
u

t 
B

E
R

proposed decoder

Fig. 27. Error correction results of the proposed decoder.

Better results are achieved if the structure is run against

burst errors. In Fig. 26, an example error characteristic is

presented. The proposed characteristic to test presented

structure (Fig. 27) is used. The solution achieves very

good BER performance, but this is not the most impor-

tant statistic. Number of bit errors in individual blocks is

significantly reduced, but the total number of fully recov-

ered blocks is lower than after the RS(255, 223) decoding

(Fig. 28).

10
-3

10
-4

10
-2

10
-1

RS(255, 223)
RS(255, 239)
proposed decoder

Error rate

P
er

ce
n

ta
g

e 
o

f 
co

rr
u

p
te

d
 b

lo
ck

s 
[%

] 90

80

70

60

50

40

30

20

10

0

100

Fig. 28. Block correction results of the proposed decoder.

An additional disadvantage is that the M and N matrixes

(Fig. 25) are dependent from the error characteristic, and

are not universal for all burst error lengths. If the length of

the typical error produced by a channel is changing, then

also the matrixes have to be adopted.

The proposed scheme can be run iteratively. Authors do

not consider an iterative mode of operation due to energy

consumption and latency. For now, the presented solu-

tion cannot be considered as a substitute of the typical RS

decoder.

6. Conclusion

In the paper, three major aspects of the 100 Gb/s data link

layer are explained. Firstly, the limiting factors of the im-

plementation are analyzed. The data link layer robustness

is improved after introducing the ACK-frame compression

90

80

70

60

50

40

30

20

10

0

100

data throughput

T
h

ro
u

g
h

p
u

t 
[G

b
/s

]

10
-3

10
-6

10
-7

10
-4

10
-2

10
-5

Bit error rate

Fig. 29. Performance of the FPGA implementation in view of

a bit error rate.

98



100 Gb/s Data Link Layer – from a Simulation to FPGA Implementation

and coding. This reduces the total number of timeouts in

the system simulation. After that, the data segmentation

can be investigated. The most important observation is

that the segmentation has more influence on the uncoded

transmissions, than for the transmissions coded with the

RS block codes. Because of this reason, authors skip the

implementation of a variable segment size in the first itera-

tion. Instead of it, authors focus on the FEC algorithms and

a solution to manage the FEC overhead against the trans-

mission requirements. The goal is to use as little overhead

as possible and maximize the efficiency.

Link adaptation used with the HARQ-I simplifies the FPGA

design, and it is a good substitute of the more complicated

HARQ-II method. That allows removing buffers from the

design, due to the fact that broken frames do not have to

be buffered.

All presented results are validated on the Xilinx VC709

Virtex 7 FPGA platform. The implementation supports

a net data rate of 97 Gb/s on the real FPGA-hardware

(Fig. 29).

Acknowledgements

This paper is related to the End2End100 project and co-

operates with other proposed projects of the DFG Special

Priority Program 1655 (SPP1655) on “Wireless 100 Gb/s

and beyond”, e.g. the Real100G.COM and Real100G.RF.

This group of projects will investigate a complete wireless

100 Gb/s system at ultra-high frequencies (240 GHz).

References

[1] S. Koenig et al., “Wireless sub-THz communication system with

high data rate”, Nature Photonics, vol. 7, no. 12, pp. 977–981, 2013.

[2] F. Boes, T. Messinger, J. Antes, D. Meier, A. Tessmann, and

I. Kallfass, “Ultra-broadband MMIC-based wireless link at 240 GHz

enabled by 64 GS/s DAC”, in Proc. 39th Int. Conf. Infrared, Millim.,

& Terahertz Waves IRMMW-THz 2014, Tucson, AZ, USA, 2014.

[3] H. Wang, W. Yuan, B. Zhang, H. Li, Z. Zhang, X. Yang, and

W. Shi, “The design, test, and application of the front end in 0.3 THz

wireless communication systems”, in Proc. Selec. Proc. Photoelec.

Technol. Committee Conf. SPIE held June-July 2015, vol. 9795, 2015

(doi: 10.1117/12.2214175).

[4] T. Nagatsuma, K. Kato, and J. Hesler, “Enabling technologies for

real-time 50-Gbit/s wireless transmission at 300 GHz”, in Proc. ACM

Int. Conf. Nanoscale Comput. & Commun. ACM NanoCom 2015,

Boston, MA, USA, 2015

[5] I. T. Monroy, “Photonic techniques for sub-Terahertz wireless data

transmission”, in Proc. Photonic Networks and Devices (Networks)

2015, Boston, MA, 2015

(doi:10.1364/NETWORKS.2015.NeT1D.1).

[6] K. KrishneGowda, T. Messinger, A. C. Wolf, R. Kraemer, I. Kallfass,

and J. C. Scheytt, “Towards 100 Gbps wireless communication in

THz Band with PSSS modulation: A promising hardware in the

loop experiment”, in Proc. IEEE Int. Conf. Ubiquit. Wirel. Broadb.

ICUWB 2015, Montreal, Canada, 2015.

[7] 802.11ad-2012 – IEEE Standard for Information Technology –

Telecommunications and Information Exchange Between Systems

– Local and metropolitan area networks – Specific requirements –

Part 11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications Amendment 3: Enhancements for Very

High Throughput in the 60 GHz Band, IEEE Standard Association,

12.2012 [Online]. Available: http://www.standards.ieee.org

[8] T. Li, Q. Ni, D. Malone, D. Leith, Y. Xiao, and T. Turletti, “Aggre-

gation with fragment retransmission for very high-speed WLANs”,

IEEE/ACM Trans. Networ. (TON), vol. 17, no. 2, pp. 591–604,

2009.

[9] D. Qiao, S. Choi, and K. G. Shin, “Goodput analysis and link adapta-

tion for IEEE 802.11 a wireless LANs”, IEEE Trans. Mob. Comput.,

vol. 1, no. 4, pp. 278–292, 2002.

[10] D. Skordoulis, Q. Ni, H.-H. Chen, A. P. Stephens, C. Liu, and

A. Jamalipour, “IEEE 802.11n MAC frame aggregation mechanisms

for next-generation high-throughput WLANs”, IEEE Wirel. Com-

mun., vol. 15, no. 1, pp. 40–47, 2008.

[11] E. H. Ong, J. Kneckt, O. Alanen, Z. Chang, T. Huovinen, and

T. Nihtil, “IEEE 802.11ac: Enhancements for very high through-

put WLANs”, in Proc. IEEE 22nd Int. Symp. Personal Indoor &

Mob. Radio Commun. PIMRC 2011, Toronto, Canada, 2011.

[12] S. Choi and K. Shin, “A class of adaptive hybrid ARQ schemes

for wireless links”, IEEE Trans. Veh. Technol., vol. 50, no. 3,

pp. 777–790, 2001.

[13] L. Badia, N. Baldo, M. Levorato, and M. Zorzi, “A Markov frame-

work for error control techniques based on selective retransmission

in video transmission over wireless channels”, IEEE J. Selec. Areas

Commun., vol. 28, no. 3, pp. 488–500, 2010.

[14] M. A. Ingale, “Error correcting codes in optical communication sys-

tems”, Master Thesis, School of Electrical Engineering, Chalmers

University of Technology, Gothenburg, Sweden, 2003.

[15] S. Falahati and A. Svensson, “Hybrid type-II ARQ schemes with

adaptive modulation systems for wireless channels”, in IEEE VTS

50th Veh. Technol. Conf. VTC 1999-Fall, Amsterdam, The Nether-

lands, 1999.

[16] M. Ehrig and M. Petri, “60 GHz broadband MAC system design

for cable replacement in machine vision applications”, AEU-Int. J.

Elec. Commun., vol. 67, no. 12, pp. 1118–1128, 2013.

[17] E. Esteves, P. J. Black, and M. I. Gurelli, “Link adaptation techniques

for high-speed packet data in third generation cellular systems”, in

Proc. Eur. Wirel. Conf., Florence, Italy, 2002.

[18] S. Lin and D. Costello, Error Control Coding: Fundamentals and

Applications, New Jersey: Prentice-Hall, 1983.

[19] Ł. Łopaciński, M. Brzozowski, R. Kraemer, and J. Nolte, “100 Gbps

wireless – challenges to the data link layer”, in IEICE Inform.

& Commun. Technol. Forum IEICE ICTF 2014, Poznań, Poland,

2014.

[20] H. Chen, R. G. Maunder, and L. Hanzo, “A survey and tutorial on

low-complexity turbo coding techniques and a holistic hybrid ARQ

design example”, IEEE Commun. Surv. & Tutor., vol. 15, no. 4,

pp. 1546–1566, 2013 (doi: 10.1109/SURV.2013.013013.00079).

[21] M. Marinkovic, M. Krstic, E. Grass, and M. Piz, “Performance and

complexity analysis of channel coding schemes for multi-Gbps wire-

less communications”, in Proc. IEEE 23rd Int. Symp. Personal In-

door and Mob. Radio Commun. PIMRC 2012, Sydney, Australia,

2012.

Łukasz Łopaciński received

his M.Sc. degree in Computer

Science from West Pomera-

nian University of Technology,

Szczecin, Poland, in 2009.

Since 2007, he worked in in-

dustrial companies in field of

embedded systems and wire-

less communication. Currently

he is working in BTU Cottbus

(Germany).

99



Łukasz Łopaciński, Marcin Brzozowski, Rolf Kraemer, Steffen Buechner, and Jörg Nolte

E-mail: lukasz.lopacinski@b-tu.de

Brandenburg University of Technology

Cottbus-Senftenberg

Platz der Deutschen Einheit 1

03046 Cottbus, Germany

Marcin Brzozowski received

his M.Sc. and Ph.D. degrees in

Computer Science from BTU

Cottbus, Germany, in 2006 and

2012, respectively. Currently he

is working with networking and

embedded systems in IHP

Germany. His research interests

include computer networks and

operating systems.

E-mail: brzozowski@ihp-microelectronics.com

IHP Microelectronics GmbH

Im Technologiepark 25

15236 Frankfurt (Oder), Germany

Rolf Kraemer received his

M.Sc. and Ph.D. from RWTH

Aachen in electrical engineer-

ing and computer-science in

1979 and 1985. He joined the

Philips research laboratories in

1985 where he worked in dif-

ferent positions and responsibil-

ities. In 1998 he became profes-

sor at the technical university of

Cottbus with the joined appoint-

ment of the department head of wireless systems at the IHP

in Frankfurt (Oder). In the IHP he leads a research depart-

ment with approximately 70 researchers in topics of high

speed wireless communication, context aware middleware,

sensor networks as well as embedded processors for en-

cryption, and protocol acceleration.

E-mail: kraemer@ihp-microelectronics.com

IHP Microelectronics GmbH

Im Technologiepark 25

15236 Frankfurt (Oder), Germany

Steffen Buechner received his

M.Sc. in Computer Science

from the BTU Cottbus in 2011.

After that, he participated at

several research projects at the

Distributed Systems/Operating

Systems Group of the BTU Cot-

tbus in the fields wireless sensor

networks and embedded sys-

tems. Currently he is working

on a parallel event stream pro-

cessing concept for utilizing the processing power of em-

bedded many cores for ultra-high data rate wireless commu-

nication protocol handling. His research interests include

networking, embedded distributed systems, and operating

systems.

E-mail: Steffen.Buechner@b-tu.de

Brandenburg University of Technology

Cottbus-Senftenberg

Platz der Deutschen Einheit 1

03046 Cottbus, Germany

Jörg Nolte is professor for dis-

tributed systems and operat-

ing systems at the Branden-

burg University of Technology

in Cottbus (Germany). He re-

ceived his M.Sc. (1988) and

Ph.D. (1994) in Computer Sci-

ence from the Technical Univer-

sity of Berlin. He was a prin-

cipal member and finally the

vice-head of the PEACE group

at GMD FIRST (Berlin) that developed the operating sys-

tem for Germany’s first massively parallel supercomputer.

In the 90s he was a post-doc fellow of the Real World

Computing Partnership (RWCP) in Tsukuba Science City,

Japan. His major research interests are operating systems,

middleware and programming languages for parallel, dis-

tributed and embedded systems.

E-mail: Joerg.Nolte@b-tu.de

Brandenburg University of Technology

Cottbus-Senftenberg

Platz der Deutschen Einheit 1

03046 Cottbus, Germany

100


