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Abstract—The paper presents a practical approach to calcu-

lating intra-domain paths within a domain of a content-aware

network (CAN) that uses source routing. This approach was

used in the prototype CAN constructed as a part of the Future

Internet Engineering project outcome. The calculated paths

must satisfy demands for capacity (capacity for a single con-

nection and for aggregate connections using the given path

are considered distinctly) and for a number of path-additive

measures like delay, loss ratio. We state a suitable variant of

QoS-aware unsplittable multicommodity flow problem and

present the solving algorithm. The algorithm answers to the

needs of its immediate application in the constructed system:

a quick return within a short and fairly predictable time,

simplicity and modifiability, good behavior in the absence of

a feasible solution (returning approximately-feasible solutions,

showing how to modify demands to retain feasibility). On the

other hand, a certain level of overdimensioning of the network

is explored, unlike in a typical optimization algorithm. The

algorithm is a mixture of: (i) shortest path techniques, (ii) sim-

plified reference-level multicriteria techniques and parametric

analysis applied to aggregate the QoS criteria (iii) penalty and

mutation techniques to handle the common constraints. Nu-

merical experiments assessing various aspects of the algorithm

behavior are given.

Keywords—multicriteria analysis, QoS-aware unsplittable mul-

ticommodity flow, traffic engineering.

1. Introduction

A practical approach to traffic engineering in a domain

of the Content-Aware Network (CAN) with source rout-

ing is presented. The CAN network was a prototype built

within the framework of the Future Internet Engineering

project [1]. The project aimed at the construction of an ar-

chitecture allowing a coexistence of various network tech-

niques IP, circuit switching and post-IP, like CAN) on top

of a common, virtualized equipment. A traffic engineering

module computing content delivery paths satisfying Quality

of Service (QoS) requirements within a CAN domain was

necessary. Its construction was an interesting challenge,

since the module had to be a part of an operational manage-

ment system, thus it had specific demands, not usually satis-

fied by the existing relevant optimization algorithms. First,

the module had to give any, perhaps by far non-optimal re-

sult within the time acceptable by the CAN administrator.

On the other hand, a fair level of the network overdimen-

sioning could be assumed, which is the usual case. Also,

the constructed module and algorithm should have been

easily expandable to encompass changes in the traffic engi-

neering problem statement caused by a rapid development

of the prototype.

Represent our network as directed graph (V,E) where

V ∈ N is the set of nodes (identified with natural numbers)

and E ∈N×N is the set of arcs. Let n = |V |, m = |E|. The

considered problem is then a variation of the unsplittable

multicommodity flow problem with QoS constraints where

commodities are defined by pairs: (relation, QoS class)

with relation being a pair of different nodes: source and

destination. We shall also discuss the possible extension

of the problem with the constraints on maximum Protocol

Data Units (PDUs) processed in a node within a second.

Precisely, the problem is stripped a goal function, and is

a feasibility problem rather than an optimization problem.

A commodity must be sent through a single path, due to

the construction of the control plane. We avoid excess of

the capacities of links. Also, the vector of L≥ 1 segment-

additive measures of paths, like delay, error rate (when

small), loss ratio, should not exceed the vector of demands

connected with the given QoS class. The delay, loss ratio,

or other additive measure for a given link may differ for

different classes of services (CoS), which is determined by

the queuing disciplines applied in the system.

1.1. Related Work

The problem of finding a path in a graph subject to multiple

additive constraints, the multi-constrained path problem, is

already NP-hard [2]. Thus, the same should be expected

from our problem, containing that one. Actually, similar

problems to ours cause a trouble to researches and their

hardness (and their reluctance to distributed solving) ceases

the proliferation of QoS technologies. Solving techniques

for such problems traditionally use various polynomial-time

approximations of them. Such approximations seem, how-

ever, aimed at obtaining a solution too precise for our needs

at the expense of a too large solving time.

For example, in [3], a QoS-aware transportation planning

problem (with a goal function representing the operator’s
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profit and with client demands elastic to the obtained QoS

measures) is reduced to a fractional packing problem and

treated using the Lagrangian relaxation technique of [4].

The authors obtain a (1− ε)−2(1 + ε)2 – approximate so-

lution within a O(( 1
ε )3(m+ k) log(m+ k)mn2 · ( 1

ε ) log(m+
k)+ log(nU)) time, with U being the maximal ratio of link

capacities. A more heuristic approach is presented in [5],

for a delay-constrained routing problem, thus with L = 1
but where a link delay can be a quite arbitrary function of

the link traffic (we, in turn, assume this function constant).

The main trick there was relaxing the ugly, non-convex de-

lay constraints with the augmented lagrangian, the result-

ing subproblems were still non-convex but locally convex

and could be approximately solved with local optimiza-

tion techniques. This approach remains quite expensive in

requiring optimization (mathematical programming) tech-

niques while yielding only an approximate, local solution

of a non-convex problem.

The complex problem of QoS multicommodity routing has

been also treated with genetic algorithms. An interesting

example is contained in [6], where the chromosomes en-

code some internal flows. The author tries to preserve the

feasibility of chromosomes over the iterations. Genetic al-

gorithms are not very sensitive to the choice of starting

point but suffer from a too quick convergence that yields

a solution far from the optimum. Therefore, the authors

of [7] try to augment the genetic algorithm for a QoS mul-

ticast routing problem with a tabu-search technique, that

has the opposite character: converges longer but depends

of the starting point choice. In neither of the papers, how-

ever, very much can be precisely said about the solution

quality and time, moreover, the experiments in [6] show an

unsmooth, jumpy dependence of the solution time of prob-

lem sizes, while a predictable dependence is needed for our

application.

An alternative to solving a QoS-constrained multicom-

modity problems is to allocate routing paths separately, i.e.

solve a series of multi-constrained path (or: shortest path)

problems that are, however, augmented to take care about

leaving sufficient free link capacities for other paths. In

the simple Widest-Shortest Path (WSP) approach [8], one

picks the widest path between the shortest (simply in terms

of hops number) paths from the origin to the destination in

the subgraph built of links with capacities not less than the

commodity demand. The symmetric Shortest-Widest Path

approach is described in [9].

More sophisticated approaches involve more complex mea-

sures of bottlenecking potential of a path and rerouting,

i.e. a recalculation of some paths if several paths coming

through a link form a bottleneck – see [10]. Regarding rout-

ing a single QoS-constraints path (finding a multiconstraint

path), which is an NP-hard problem, as said, and the solu-

tion methods are usually extensions of the Dijkstra shortest

path method, which turn out to be variants of the Branch

and Bound methods. They contain various accelerations,

like fast closing trees (resulting in an approximate solution

but of a controlled accuracy), or quite arbitrary reduction

of the search space without a full control of the solution

quality (TAMCRA, SAMCRA) – see [11], [12].

1.2. Proposed Approach

We propose a quick, rather rough yet effective heuristics,

based on a consecutive allocating of paths for particular

commodities (cf. Fig. 1). In this, we mimic a hypotheti-

cal manual traffic engineering. This is followed by a path

rerouting phase, in case of the excess of the link capacities.

In practice, however, this excess turns out to be marginal

and the rerouting phase is short or even absent. This is

important, because, in general, rerouting is a greedy oper-

ation, and it is difficult to design a rerouting-based algo-

rithm of a provable low complexity. The path for the given

commodity is generated as a shortest path in the appropri-

ate source-sink relation with the link costs in the network

graph defined as linear combinations of the link character-

istics (delay, jitter, etc.) and also of some penalties for the

current excess of the capacity of the link. The weights in

the linear combination are, however, varied in a parametric

experiment. Consequently, for a relation, many candidate

paths are obtained.

Preprocessing
(e.g. removing degenerate relations)

Phase 1: Consecutive path allocation
Phase 2: Rerouting

Pruning low-capacity links

New path
Array p of currently allocated paths|

Commodity number k

Bottleneck information

Find Best Path

Parametric experiment

Shortest path calculations

Fig. 1. Structure of the solving method.

The choice of the final path for the relation can be formed

very elastically and may reflect various user preferences

about the compromise between the particular QoS charac-

teristics of the best path and also may take into account

various potential heuristics to avoid link capacity excess in

the further iterations of the algorithm. We have decided to

use multicriteria technique (reference-level based [13]) to

choose the best path. The overall simple and minimalist

construction of the method allows its easy augmentation to

follow even severe modifications to the solved problem. In

developing new network techniques, the requirements from

the traffic engineering module change very often. The price

paid for the elasticity of our method is performing para-

metric experiments, which exhaustively search the space of

weights. However, since the number of QoS characteristics
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is usually low, the running time of the parametric experi-

ments may be still moderate.

Our approach shares a relative computational simplicity

with heuristics like SWP that allocate a path for the con-

secutive commodities and leaves room for other paths. Un-

like these heuristics, it can be, however, considered a fully

fledged method for solving a QoS-aware MCF problem,

which looks at the whole set of commodities. Firstly, this

is because of the existence of rerouting phase and secondly,

because of the resolving of capacity conflicts of paths,

which happens during the parametric experiments. In par-

ticular, the weights with which the bottlenecks contribute to

the link weights when calculating the shortest path varies

in the parametric experiment, unlike in [10], where it is

fixed. Our approach is certainly a heuristics, but is com-

putationally lighter than approaches like [4], [5] and has

a highly predictable computation time. In addition, in Sec-

tion 5 and in Appendix A we are able to show some partial

possibilities of accessing the quality of obtained solution –

in terms of the obtained additive path characteristics.

1.3. Mathematical Notation

We shall use the set membership operator ∈ also to denote

the presence of en element in a sequence. We shall have�
+ = [0,∞),

�
− = (−∞,0], � = {0,1, . . .}, for p ∈ � n,

Y ⊆ � n p+Y = {p+y : y ∈ Y}, denote the convex hull of

a set A ∈ � n – by conv(A). A C ∈ � n is a cone if ∀c ∈C,
a > 0 ac∈C. We shall identify tuples of numbers (elements

of
� n) with column vectors.

2. Problem Origin

One of the Parallel Internets running simultaneously in the

IIP system is the CAN network [14]. It uses its own trans-

mission protocols in its interior, however, the users and the

content storing servers connect to the network via TCP/IP

access networks.

In the CAN, a user requests for a particular content

(e.g. a video file), the network finds a server on which the

content is stored and the content is transferred to the user

via a constant (during the connection time) path between

the access nodes controlling two access networks: that of

the user and that of the content server. The transmission

uses source routing, where the definition of the transmis-

sion path is stored in the frame header by the emitting node.

By routing we mean the calculation of the paths.

The CAN network is divided into domains (Autonomous

Systems, ASes). The connection path is set-up upon the

connection request, by assembling intra-domain fragments

of such paths (shortly: intra-domain paths), that are pre-

calculated in each domain separately, for various possible

external relations of the domain. The precalculation of

intra-domain paths in the domain (called intra-domain rout-

ing) is the main subject of this paper and involves solving

a mathematical programming problem.

Hence, in a domain (cf. Fig. 2), we need to compute paths

for various CoS and various relations.

AS #9 AS #5

Access network:
prefix = fddf:bac3/12

Node 109
(border gateway) Node 105

(border gateway)

Node 103
(edge node)

Node 104

AS #1

Fig. 2. An exemplary Parallel Internet CAN domain (AS) with

V = {103,104,105,109}, E = {(103,109), (109,103), (104,105),
(105,103), (109,104), (105,109)}, three external elements: two

adjacent domains and one access network.

A relation is a pair of elements external to the domain (an

external element is either an access network or an adjacent

domain/AS, each external element has a unique controlling

node in the domain – either a border gateway or an edge

node, respectively). QoS demands for the intra-domain

paths are given by the administrator for each relation.

3. Problem Statement

We shall sometimes identify network objects with their

mathematical descriptions, e.g. identify nodes with their

numbers. Our network is a directed graph G =(V,E), where

V ⊂ � is the nonempty set of nodes, E ⊆ V ×V is the

nonempty set of links. We use n = |V |, m = |E|.
We have the nonempty set C⊆ � of classes of services and

the number L ≥ 1 of additive link/path characteristics like

delay, loss ratio, etc.

Each link e ∈ E has the associated capacity ωe > 0 and

characteristics χc,e,l > 0 for c ∈ C, i ∈ {1, . . . ,L}. These

characteristics depend on the traffic but this dependence can

be suppressed by taking values for some assumed maximum

traffic. In traffic engineering we cannot control the actual

future traffic intensities (we only calculate them using traffic

demands estimates), thus cannot guarantee the values of the

characteristics being functions of the traffic.

Note that the characteristics are indexed with a class of

service, since different queue disciplines are set for different

CoS, while the link capacities are common for all the CoS

and it is the algorithm role to split the capacities between

particular paths (thus between particular CoS).

We have the nonempty set {1, . . . ,K} of commodities, ac-

tually describing relation-CoS pairs. For k ∈ 1, . . . ,K let

start(k) and end(k) be the be the source node and sink node

for the commodity transfer, respectively, c(k) be the class

of service of the commodity. We assume start(k) 6= end(k)
holds1. There may be several commodities with the same

1Actually, relations between external elements controlled by the same

node are possible. However, we can remove them from the considerations,

since such relations yield degenerate, 0-link intra-domain paths.
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start(·), end(·) and c(·), since they may refer to various

relations with the same source and sink nodes (several ex-

ternal elements, i.e. adjacent domains or access networks

can be controlled by the same node). Various relations can

serve various subsets of classes of services, so the number

of commodities may be lower than |C| times the number of

relations.

The following demands are defined by the administrator:

1. φ
k
> 0 for k = 1, . . . ,K – the QoS-required capacity

of a path necessary for realizing a single connection

for demand k;

2. φk (satisfying φk ≥ φ
k
) for k = 1, . . . ,K – the aggre-

gated traffic (often referred as “traffic”) from many

simultaneous connections for commodity k. We use

a static, deterministic model of traffic aggregation;

3. χ̆k,l > 0 for k = 1, . . . ,K, l = 1, . . . ,L – maximum

allowed values of the additive characteristics (delay,

etc.) for the calculated intra-domain path for com-

modity k. The administrator sets these values bearing

in mind the QoS requirements for the same character-

istics for all the client-server paths, crossing several

domains.

By a path p we shall mean a nonzero-element sequence

(p1, p2, . . . pq) of different numbers from V such that for

all i ∈ {1, . . . ,q−1} (pi, pi+1) ∈ E. For such a p for e ∈ E,

we shall write eon p if ∃k 1≤ k < q; e = (p j, p j +1), and

start(p) = p1, end(p) = pq.

For commodity k ∈ {1, . . . ,K}, Pk will denote the set of

possible paths for transferring the commodity k, i.e. such

acyclic paths p that start(p) = start(k), end(p) = end(k).
The problem variables are � i ∈ Pi for i = 1, . . .K; � repre-

sents the intra-domain path for commodity i. We also use

the vector notations: � = ( � 1, . . . � K), φ = (φ1, . . . ,φK).
Variable � will be also the solving algorithm iterate. Let

us define some functions:

1. φe( � ,φ) = ∑
k=1,...,K:

eon � k

φk

for e ∈ E – the total flow in link e;

2. χk(p) : Pk 7→ � L; (χk(p))l = ∑
e∈q

χc(k),e,l

for l = 1, . . .L – vector of the additive characteristics

of a potential path p for commodity k.

Our problem is defined as follows:

Find � ∈ {P1, . . . ,PK} (1)

satisfying

φ
k
≤ ωe for e on � k, k = 1, . . . ,K (satisfaction of

the QoS single connection capacity demand) (2)

φe( � ,φ)≤ ωe for e ∈ E (flow constraints of links) (3)
(
χk( � )

)
l ≤ χ̆k,l for p ∈ Pk, k=1, . . . ,K, l =1, . . . ,L

(additive QoS characteristics demands for paths). (4)

Additionally, we understand constraints (2) as hard (in-

violable) since their violation would immediately violate

some QoS demands of the assembled connection paths.

Conversely, the remaining constraints are soft and could

be possibly slightly violated if the algorithm cannot find

a feasible solution. This setting is substantiated with the

fact that these constrains anyway work with imprecise data:

(3) – with the estimated traffic demands φ and (4) – with

demands χ̆k,l , which are a kind of a quotas of some true

QoS demands for a connection path assigned to the domain

by an arbitrary decision of the administrator. They repre-

sent the maximum allowed contribution of the intra-domain

path of our domain into the additive characteristics of the

whole connection path.

Two modifications of the problem are considered:

Modification 1. We add the following constraints:

� i = � j for (i, j) ∈ {1, . . . ,K} : start(i) =

= start( j)∧ end(i) = end( j)∧ c(i) = c( j).
(5)

In this way we require that paths for commodities with

identical class of service, source and sink node should be

transferred with the same path. This modification arose

due to the limitations of the control plane in CAN, which

distinguishes relations by pairs of source-sink nodes. Com-

modities coming from (or to) different domain external el-

ements (access networks, neighboring domains) controlled

by the same node and representing the same CoS cannot

be properly distinguished.

Modification 2. We add the following constraints:

κc(k) ∑
K = 1, . . . ,K :

e = (i,v),
eon � k

φk +κc(k) ∑
k ∈ 1, . . . ,K :
start(k) = v

φk ≤ ξv for v ∈V, (6)

where a parameter ξv denotes the Protocol Data Unit per

second (PDU/s) throughput of node v, and a parameter κc
denotes the size of a class c PDU, expressed in the used

units of link capacity multiplied by one second. This mod-

ification expresses the limitations of the number of PDUs

incoming in a second that the nodes can process.

4. Multicriteria Assessment Technique

Inside the algorithm, we shall assess some potential paths

by several criteria that express the satisfaction of particular

QoS demands, thus need a multicriteria assessment tech-

nique. Suppose we assess elements of set X with a vec-

tor quality function Q : X 7→ Rk, where the higher Qi(·),
the better the satisfaction of the i-th criterion (i = 1, . . . ,
k). Further assessments and comparisons of elements of

X can be reduced to assessing and comparing the values

of Q for them – points in the space of attainable criteria

Y = Q(X)⊆ � k.

Definition 1. For y1,y2 ∈ � k, y1 dominates y2 (in the Pareto

sense), i.e. (y1� y2) if ∃i∈ {1, . . . ,k} y1
i > y2

i ∧∀ j ∈ {1, . . . ,
k}y1

i > y2).
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Pareto dominance� seems the only apparent comparison of

points in Y but is only a partial order. A linear order can be

obtained by scalarizing, i.e. comparing values of scalarizing

function S(q) : Y 7→ �
of point in Y . We will simplify the

reference-level technique [13] and set S = Sref = Sref
y̆,ȳ where

Sref
y̆,ȳ(y) = min

i=1,...m
(yi− y̆i)/(ȳi− y̆i), (7)

where we have the following reference levels: reservation

levels y̆i for particular criteria (the values below that the

relevant criteria should not deteriorate) and aspiration lev-

els ȳi > y̆i, here used for scaling purposes2 (i = 1, . . .k).

Sref is consistent with the Pareto dominance in the sense

that if a � b then S(a)≥ S(b)). This is also the property

of weighted summings, more frequently used as scalarizing

functions. Unlike with weighted summings, however, al-

ways all Pareto-nondominated (Pareto-optimal) elements of

Y can be obtained as maximizers of Sref
y̆,ȳ by a suitable choice

of numbers y̆i, ȳi (assumed that the maximizers are unique

for all choices of ȳi, y̆i, which holds under the following reg-

ularity condition: ∀q1,q2 ∈ Y∀i ∈ {1, . . . ,k} q1
i 6= q2

i , eas-

ily achievable for finite sets X by a suitable small random

perturbation of Q). With Sref
y̆,ȳ we have also a clear indica-

tion that all the criteria values yi for some point in X (e.g.

of a path) do not deteriorate below their reference levels

(≈ a path satisfies all the QoS constraints): Sref
y̆,ȳ(y)≥ 0.

Example 1. Let a path x be assessed by its band-

width bandwidth(x) and delay delay(x). In our formal-

ism, reasonably y = (y1,y2) = Q(x) = (bandwidth(x),
−delay(x)), so both the outcomes y1 and y2 are maximized

(the greater – the better). Let us have paths xA, xB, xC with

respective vectors of outcomes yA = (100,−3),yB = (200,
−2),yC = (200,−1) – in some common units. Then

(i) yB � yA, since yA is higher than yB on all its coordi-

nates,

(ii) yA and yC are not comparable in with Pareto order

�: neither yA � yB nor yB � yA.

Let us set reservation levels y̆ = (150,−4) and aspiration

levels ȳ = (400,−1). Then

(i) Sref
y̆,ȳ(y

B) = min((200−150)/(400−150),

(−2−−4)/(−1−−4))= 1/5,

(ii) Sref
y̆,ȳ(y

A) = min((100−150)/(400−150),

(−3−−4)/(−1−−4)) = −1/5 and is negative,

since the first coordinate of yA is worse than its reser-

vation level 150.

Note that since yB � yA, we have Sref
y̆,ȳ(y

B)≥ Sref
y̆,ȳ(y

A).

2Particular criteria can have various typical values, be expressed in dif-

ferent units, thus should be made comparable. Note in (7), the i-th term in

min (representing the satisfaction from fulfilling criterion i by y) becomes

0 when yi is at its reservation level y̆i and 1 when yi is at its aspiration

level. Thus, in a sense, criterion i is normalized with (ȳi− y̆i) – cf. [13].

5. Solving Algorithm

5.1. Algorithm Statement

The main algorithm iterate will be � = ( � 11, . . . , � K),
where pi ∈ Pk for i = 1, . . . ,K; � is initially set to (NIL,
NIL, . . . ,NIL) and changed during the algorithm run.

Let us define some additional functions:

1. ρe( � ,φ) for e ∈ E is the excess of the capac-

ity of link e by the joint flows in the paths

in � (in the few following definitions we shall

assume path flows as given by φ) ; ρe( � ) =

max
((

∑eon � k,k=1,...,K φk

)
−ωe,0

)
; we assume that

no link belongs to a path being a NIL.

2. ρ( � ) = ∑e∈E′ ρe( � ) – the summary excess of the

links capacity.

3. ρ−(k, � ) where k ∈ {1, . . . ,K}, while we assume

pk 6= NIL – is the measure of the contribution of

the path � k in the ρ( � ). We have ρ−(k, � ) = ρ( � )−
ρ(( � 1, . . . , � k−1,NIL, � k+1, . . . , � K)). Thus ρ−(k, � )
is the decrease in ρ( � ) we would get by making � k
NIL by removing path � k from the vector � of cur-

rently constructed paths.

4. ρ+(p,k, � ) where p ∈ Pk, k ∈ {1, . . . ,K}, while we

assume pk = NIL – is the measure of the potential of

path p to increase the summary link capacity excess

by storing p at the k-th position in � . We have ρ+(p,
k, � ) = ρ(( � 1, . . . , � k−1 p, � k+1, . . . , � K))−ρ( � ).

5. ρ+
e (e,k, � ) where e∈E, p∈Pk, k∈{1, . . . ,K}, while

we assume pk = NIL – is the measure of the contribu-

tion of path � k to the excess of the capacity of link

e. We have ρ+
e (p,k, � ) = ρe(( � 1, . . . , � k−1 p, � k+1,

. . . , � K))−ρe( � ).

6. Q(p) = Qk,E′(p) (where k ∈ {1, . . .K} is the com-

modity number, p ∈ Pk, E ′ ⊆ E) is a scalar quality

assessment function for path p for commodity k rel-

ative to subset E ′ of E; Qk,E′(p) = −Sref
y̆,ȳ(−χk(p)),

where y̆l =−χ̆k,l , ȳl = y̆l +∑e∈E′ χc(k),e,l (i = 1, . . .L).

The two minus signs serve to adjust the multicrite-

ria apparatus from Section 4, which uses maximized

criteria, to our minimized criteria (like path delay,

path loss). Aspiration levels ȳl are (quite arbitrar-

ily) chosen to “scale” criterion i with the sum of the

corresponding characteristics (delay, loss) over links

in E ′ (cf. Section 4).

7. random(a,b), where a,b ∈ �
, a < b – returns a ran-

dom value chosen under the uniform distribution on

interval [a,b],

8. randexpweightvector() – returns w/|w|, where

w ∈ � L+1, and each wi is independently calculated

as exp(10 ·random(0,1)).

All the random choices in the algorithm are independent.
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Algorithm 1 Parallel Internet CAN Traffic engineering al-

gorithm

1: . Initialization:

2: � k← NIL for k = 1, . . . ,K.

3: . Phase 1

4: for all k ∈ {1, . . . ,K} (in random order) do

5: E ′←{e ∈ E : ωe ≥ φ
k
} V ′←{v ∈V : ∃w ∈V : (v,

w) ∈ E ′} . Choose a subgraph of (V,E) with links of

capacity not less than φ
k

6: � k← FindBestPath(V ′,E ′,k)
7: end for

8: . Phase 2

9: it2← 0
10: repeat

11: if
((
∀k ∈ {1, . . . ,K}, l ∈ {1, . . . ,L}

χ( � k)l − χ̆k,l ≥ 0
)
∧ ρ( � ) = 0

)
∨ it2 ≥ Θ I(n,K)

then

12: return � , φ̆
13: end if

14: it2← it2+1
15: rhobefore← ρ( � ) . Try a mutation

K̃=SelectToChange(ntochange)

16: pk← NIL for k ∈ K̃
17: for k ∈ K̃ (in random order) do

18: E ′← {e ∈ E : ωe ≥ φ
k
} V ′←

{v ∈V : ∃w ∈V : (v,w) ∈ E ′} . Choose a subgraph of

(V,E) with links of capacity not less than φ
k

19: � k← sparepk← FindBestPath(V ′,E ′,k)
20: end for

21: if ρ( � ) > rhobefore then

22: � k← sparepk for k ∈ K̃ . Withdraw mutation

23: end if

24: until false

25: . Selects paths

to be changed in the incoming mutation, randomly but

with preferring those ps with high potential ρ−(·, p) of

decreasing ρ( � ) (heuristics)

26: function SelectToChange(numofpaths∈ � )

27: S← /0
28: totalpathrho← ∑K

i=1 ρ−(i, � )
29: repeat

30: Choose randomly i from {1, . . . ,K}\S
31: if random(0,1) < Θ III/K + ρ−(i,

p)/totalpathrho then S← S∪{i}
32: end if

33: until |S|= numofpaths

34: return S
35: end function

The algorithm, for the problem without Modifications 1

and 2, is depicted as Algorithm 1. It consists of two phases.

In phase 1, the paths for the commodities are computed by

function FindBestPath that searches a path best in terms

of both the additive characteristics (delay, jitter, etc.) and

ρ+, the potential of increasing the current total link capac-

ity excess. The term “best” related to several criteria is

understood in terms of a complex formula, involving the

reference level technique. Function FindBestPath will be

described in Subsection 5.2. If phase 1 does not find a fea-

sible solution and it does not exhaust the iteration limit,

phase 2 of the local solution improvement is executed. It

iteratively tries to decrease the total link capacity excess

by removing a few paths from � and then recompute these

paths in random order (the order of computing paths for a

set of commodities is essential, since one computed path

influences the current function ρ+, and the current ρ+ in-

fluences the next computed path, and so on).

Modification 1 is easily taken into account in the realized

management module. Problem with this Modification is re-

duced to the problem without the Modification with artifi-

cial commodities, each being an aggregate of the commodi-

ties with a particular source node-sink node pair. An ag-

gregation of demands for commodities is also necessary; it

is done by summing for the traffic demands, by taking max-

imum for the single-connection capacity demands, and by

taking minimum for the additive characteristics demands.

Tackling Modification 2 is discussed later but not imple-

mented.

Function Θ I and constant Θ III are the algorithm parame-

ters, they heuristically determine the construction of a mu-

tation or the number of iterations in particular algorithm

loops. The suggested defaults for these parameters are

Θ I(K) = 3log(K +3), Θ III = 0.1.

Remark 1: Whenever for commodity k the algorithm con-

structs an empty E ′ the algorithm stops with the message

for the administrator that there is no capacity-feasible (in

terms of a single connection) path from node start(k) to

node end(k) for the given CoS c. This message shows the

direction of reengineering of the network.

5.2. The FindBestPath Function

Function FindBestPath(V ′,E ′,k) with V ′ ⊆V , E ′ ⊆ E, k ∈
{1, . . . ,K} returns a path:

arglexmax
p ∈ Pk :

∀v ∈ p v ∈V ′,
∀eon p e ∈ E ′

(
min(0,Qk,E′(p)),−ρ+(p,k, � ),Qk,E′(p)

)
.

(8)

Here arglexmaxx∈X (a1(x),a2(x), . . .at(x)) is an x ∈ X
that yields the lexicographically lowest sequence (a1(x),
a2(x), . . . ,at(x)), where the lexicographical order of se-

quences is defined by (c1,c2, . . . ,ct) > (d1,d2, . . . ,dt) if

and only if
(
(c1 < d1) ∨ (c1 = d1 ∧ c2 > d2) ∨ . . . (c1 =

d1∧ . . .ct−1 = dt−1∧ ct > dt)
)
.

Function FindBestPath, a path for commodity k in the sub-

graph (V ′,E ′) of (V,E) is returned that, if possible:

• first of all, is feasible in terms of the additive QoS

characteristics (satisfies constraints 4),

• secondly, contributes low to the total capacity infea-

sibility,
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• lastly, when the two above condition can be satisfied,

yields values of the additive characteristics as low as

possible.

We try to satisfy the demands for additive characteristics

before satisfying the capacity demands for the given traffic

for commodities. This is natural, since the additive charac-

teristic demands can be set quite precisely (they can follow

from the QoS demands divided by the expected number

of domains on the connection paths) while the traffic on

commodities can be only a result of rough prognoses.

This presents an “ideal algorithm” with the “ideal” func-

tion FindBestPath that is hard to compute. Later we will

show the “real” variant of the Algorithm 1 where this ideal

function is approximated.

Note that the FindBestPath function implicitly depends on

the current algorithm state, namely, on the array p of

currently constructed intra-domain paths. Such an implicit

dependence of functions on global variables will happen

in our depiction of the algorithm.

5.3. Comments on the Algorithm

The ideal algorithm is a heuristics, greedy in that optimizes

paths for single commodities. Thus, it cannot have a strict

convergence proof. Nonetheless, it at least exhibits proper-

ties suggesting a reasonable approaching of some solution.

The algorithm yields in each iteration a solution feasible in

terms of path additive constraints provided that one exists

and, additionally ρ(p), connected with the excess of link

capacities, decreases monotonically between the main iter-

ations. The satisfaction of the single connection capacity

demands is basically enforced by the construction of E ′.

Remark 2: The algorithm yields a solution satisfying con-

straints (4) on the additive characteristics whenever such

a solution exists. This is because all the paths in the algo-

rithm are constructed due to (8), where whenever for com-

modity k a path p ∈ Pk with a nonnegative Qk,E′(p) exists,

the argument maximum will be a path with a nonnegative

Qk,E′(p).

Remark 3: By construction, the algorithm produces in its

Phase 2 a sequence of � monotonic in ρ( � ) (since a mu-

tation that increases ρ is withdrawn). Note that ρ( � ) is

zero if and only if all the link capacity constraints (3) are

satisfied by � .

A simple extension to take into account node throughput

constraints is possible.

Remark 4: Problem Modification 2 could be tackled by

the algorithm by adding the term

∑
k∈{1,...,K}

∑
eon � k

ξ exc
v (9)

in the definition of ρe( � ); here

ξ exc
v = max

(
0,
(

∑
K = 1, . . . ,K :

e = (i,v), eon � k

φ̄k + ∑
k ∈ 1, . . . ,K :
start(k) = v

φ̄k

)
κc(k)−ξv

)

is the throughput excess at node v ∈ V . This modification

shall also update the descent definitions of ρ+, ρ− and ρ .

Term (9) expresses the summary excess of a node through-

put of both the end-nodes of the link. Also, with Modifi-

cation 2, the commodities with degenerate relations (with

the same source and sink node) are not negligible, since

they load the nodes, but can be neglected with a simulta-

neous surrogate decrease of appropriate ξv.

5.4. Approximation of the FindBestPath Function

A strict realization of FindBestPath would be clearly a dif-

ficult numerical problem itself (it contains the well-known

NP-complete multicriteria shortest path problem). In our

real algorithm the function is approximated as depicted in

Algorithm 2. Instead of searching the whole set of possible

paths for a commodity Pk, we search the set of all possible

shortest paths under a link cost being obtained by a dif-

ferent (but common for all the links) linear combinations

of the additive link characteristics as well as of the link

penalties ρe.

Algorithm 2 Approximation of function FindBestPath

function FindBestPath(V ′ ⊆ � ,E ′ ⊆ E,k ∈ � )

ω̄ ← ∑e∈E′ωe
χ̄l ← ∑e∈E′ χc(k),e,l for l = 1, . . . ,L
for itno= 1, . . . ,Θ II(K) do

w← randexpweightvector(1+L)
Potentialpaths← /0
for e ∈ E ′ do

c[e] ← ∑L
l=1 wl χ̄c(k)(k),e,l/χ̄l + wL+1ρe( � )/ω̄

. c is an array of paths indexed with pairs of integers

Potentialpaths ← Potentialpaths ∪
{Dijkstra(V ′,E ′,c,start(k),end(k))}

end for

end for

return arglexmaxp∈Potentialpaths
(

min
(
0,

Qk,E′(p)
)
,−ρ+(p,k, � ),Qk,E′ (p)

)

end function

Function Dijkstra(V ′,E ′,c,source,sink) returns a

shortest path from source∈V ′ to sink∈V ′ in graph (V ′,
E ′) (where V ′ ∈V , E ′ ∈V ′×V ′) with link-weight mapping

defined by array c (i.e., c[e] is the weight of the link e∈V ′)
by calling the Dijkstra algorithm (see [15]). Function Θ II

is the algorithm parameter with the default value of the

constant function of the value of 30.

For given commodity k and class of service c, the approxi-

mate variant of FindBestPath can access only a subset, call

it Pk, of the set Pk of paths available to the ideal vari-

ant. Namely, Pk is the set of paths available as shortest

paths under some link weights that actually linearly com-

bine the values of some characteristics of the link. The

difference in the sets of available paths is essential. We

can easily see it in terms of the supremum of the set of
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values of Qk,E′(p) with p running either of Pk and Pk.

The suprema may differ essentially, which might be eas-

ily shown to be equivalent to the well-known fact in the

multicriteria analysis. In a set of variants we cannot in

general find a Pareto-optimal variant by maximizing the

weighted sum of the criteria values for the variants. In this

equivalence, Q plays the role of the scalarizing function Q
from Section 4. Fortunately, approximating Pareto-optimal

variants with the mere weighting can be shown to intro-

duce an error, measured in terms of Q, not greater than by

the factor of (number of criteria+ 1). This is the content

of Theorem 1 in Appendix A. In translation to our exam-

ple, it means that the maximal ratio of quality Qk,E′ of

paths accessible to the real and ideal variants is not more

than (L + 1). Of course, it is difficult to precisely calcu-

late how this influence the quality of the solution yielded

by our heuristics. However, the above observation gives

some imagination about it. Consequently, we could use the

number (L+1) as an assessment of the rank of oversizing

of the network (in terms of delay, jitter, etc.) necessary to

compensate for the inaccuracy of the algorithm.

The practically important advantage of the real algorithm

is that its time cost can be strictly assessed.

Remark 5: It is possible to have an implementation in

which the references to the matrices elements cost O(1) and

the Dijkstra implementation costs O(|E ′| logV ′) elemen-

tary operations (see [15]). We consider a call to random

elementary. Even when there were always V ′ = V , E ′ = E,

the cost of an iteration of phase 1 or phase 2 would be then

dominated by the cost of Θ II(K) calls to Dijkstra plus the

cost O(Θ II(K) ·mK) of evaluating the arglexmax in line 12

(we assume a reasonable implementation). Other sections

of the algorithm would be clearly dominated in time by the

above iterations.

Thus, the cost of the real algorithm is not greater than

O
(
Θ I(n,K) ·Θ II(K) ·Km(K + logn)

)
. (10)

Remark 6: It has been noticed in the literature that shortest

paths (under some graph weights) in QoS-constrained Mul-

ticommodity Flow Problems already tend to be effective

ducts for commodities also in the husbandry of available

capacities. The algorithm constructs its solution as some

shortest paths. Thus it may be often expected that the real

algorithm finishes in phase 1 with � already feasible and

phase 2 (in which link capacity violations are considered

and decreased) makes 0 full iterations. In such a case, the

run cost assessment reduces to

O
(
Θ II(K) ·Km(K + logn)

)
. (11)

Another formal issue must be noted.

Remark 7: Both the shortest path subproblems and argu-

ment maximum in (8), or in the corresponding condition

in real can be ambiguous, and the algorithm chooses then

any of the maximizing solutions. In scalarizing by function

Qk,E′ , it may lead to choosing a non-Pareto-optimal solu-

tion and in scalarizing by weighted summing, it may cause

an impossibility to use Theorem 1. However, small random

perturbation to the used link characteristics could rescind

the ambiguities and it is the subject of further work.

6. Experiments

The goal of experiments was to verify the postulated prop-

erties of the algorithm: (i) the ability to quickly find

a feasible solution under some existing overdimensioning

of the network (also to examine the dependence of this

time on the network size) and (ii) the ability to also quickly

find a near-optimal solution when we shrink the resources

a little.

The experiments have been run on topologies generated by

the well recognized BRITE generator with a two-level hier-

archy. Both the level of domains and the intra-domain level

were generated due to the Waxman model, a probabilistic

model of network growths. The problems have been cre-

ated to reflect the the prototype CAN network in the IIP

project, in particular, in its hierarchical structure and classes

of service. Parameters, e.g. link capacities, have been given

by hand reasonable values (when expressed in appropriate

units), similar to that present in the project. Because of

a high speed of modern network devices, delays were mod-

eled as induced only by propagation, i.e. proportionally to

the physical link length. Many parameters were set to the

defaults taken by the authors of BRITE.

The domain number zero of the generated domains was

always taken to construct the problem. The commodities

were constructed as follows. The relations were established

in all pairs of different domains adjacent to domain 0 (ac-

cess networks were absent for the generation simplicity).

Two classes of service, 1 and 2 (interpretable as 1 – best

effort, 2 – premium) were served in each relation.

The algorithm with its defaults settings of Θ I , Θ II and

Θ III and with the extension for Modification 1 was imple-

mented in C++ as a part of the CAN management module.

The implementation of Dijkstra used C++ Sets to em-

ulate heaps, and we may expect it to cost O(|E ′| log |V ′|)
elementary operations. The algorithm implementation in-

cluded several small optimizations, e.g. avoiding unneces-

sary repetitions of invocations of some code fragments for

unchanged data.

6.1. Key Experiment Parameters

The key experiment parameters were following:

• number of nodes n in the problem,

• the demand on the capacity of a single connection for

all relations: for CoS 1 – capacity1, for CoS 2 –

capacity2,

• the demand on the aggregated traffic for all relations –

for CoS 1 – traffic1, for CoS 2 – traffic2,
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• the demand on the path delay for all relations: for

CoS 1: delay1, for CoS 2: delay2,

• the demand on the path loss ratios for all relations:

for CoS 1: loss1, for CoS 2: loss2.

Several series of experiments were performed. Each series

of experiments consisted in changing the value of one the

above parameters while the remaining of them remained

constant.

In each experiment, according to the values of these key pa-

rameters, a topology was generated by BRITE and a prob-

lem was constructed based on this topology. The random

number generator of BRITE was always initialized with

the same (default) values so two generations of topologies

with the same parameters yielded identical topologies and

problems).

6.2. Other Experiment Parameters

Some other BRITE parameters (RT N, AS N, RT m, RT m and

RT HS BWIntraMin – compare [16]) and problem parame-

ters were following in a particular experiment:

1. Number of nodes in each domain RT N = n = 30;

2. Number of domains AS N = 10;

3. Approximate domain neighbors count AS m = 5. In

all the experiments, domain 0 turned out to have ex-

actly 5 neighbors, this yields the number of relations

equal to 5 ·(5−1)= 20 and the number of commodi-

ties K = 2 ·20 = 40;

4. The length of the square the nodes locations to be

generated within RT HS= 300;

5. The link capacities ωe = 30 for e ∈ E, thus

BWIntraMin was set to 30;

6. The number of additive characteristics L = 2 (1 refers

to delay, 2 to loss ratio)

7. The delay χc,e,1 of link e ∈ E for c ∈C was taken as

1/300 of the distance of the endpoint nodes of link

e; the distribution of this distance depends on RT HS.

8. The loss ratio χc,e,2 of link e∈E for c∈C was always

set to 0.005.

9. Demands: φ
k
= capacity1, φk = traffic1 χ̆k,1 =

delay1, χ̆k,1 = loss1 for k ∈ i{1, . . . ,K}, c(k) = 1;

φ
k
= capacity2, φk,2 = traffic2 χ̆k,1 = delay1,

χ̆k,2 = loss2 for k ∈ {1, . . . ,K} for k ∈ {1, . . . ,K},
c(k) = 2;

Other BRITE parameter settings were the the

distribution defaults taken from the exemplary

TD ASWaxman RTWaxman.conf file, other problem

parameter settings were done according to the described

construction of the problem from the topology.

6.3. Feasibility Limits

We shall establish the approximate “problem feasibility

limit” values of some key parameters that describe de-

mands – traffic1, traffic2, delay1, delay2, loss1,

loss2, i.e. for a particular key parameter, we shall assess

its best value when we obtain a feasibility problem, as-

sumed the other demands are set loosely and essentially

do not intervene. We shall do it in a heuristic reasoning

and in performed experiments (described later) in which we

gradually increase particular demands observing when the

solver falls in troubles with obtaining a feasible solution.

The established approximate limits are:

1. 1.25 for delay1 or delay2,

2. 4 ·10−5 for loss1 or loss2,

3. 15 for traffic2 (assumed traffic1 is small).

The heuristic reasoning starts with delays. The node loca-

tions are randomly selected from the square of the side of

300 in BRITE (since RT HS=300). Thus, roughly, we can

expect that a maximum distance of the source-sink pair of

nodes for some commodity is about 300 (remember that

there are only 5 adjacent domains to our domain, thus at

most 5 sink or source nodes. We cannot expect the extreme

case that some two of them are situated at the both sides

of a diagonal, i.e. at the distance of 300
√

2). If some intra-

domain path of this commodity were straight-line, the delay

would be, according to the settings explained above, 1/300

of the length of this path, i.e. about 1. As any such a path

is rather a segment line, we can expect the minimum pos-

sible delay on an intra-domain for this commodity be some

more than 1, perhaps between 1 and 2.

Now consider traffic demands. Let us account only for

the traffic demand for one CoS, say, CoS 2, and assume

traffic1 is negligibly small. The capacity demands will

be always set lower in the experiments, than the respective

traffic demands, thus can be neglected as well. In a typi-

cal case, each of the external domains is connected to our

domain by a separate border gateway node in domain (be-

cause there are sufficiently many nodes in our domain).

Thus there are 4 intra-domain paths starting at one bor-

der gateway node (they lead to the four remaining external

domains). According to the setting RT m=3, this node has

3 adjacent nodes in its domain, and it has to dispatch this

incoming traffic firstly into three links, each of capacity of

30. This seems to be the bottleneck, the distribution of

the traffic within the domain should be easier. The paths

demands are equal and the paths cannot be split, so some

link has to conduct two paths. Thus the traffic demand

traffic2 should not exceed a number about 15. We have

described the bottleneck for ingress traffic. A symmetric

bottleneck will clearly appear on egress traffic on some

border gateway node but it yields a similar traffic limit.

The limit demands on loss ratios are more difficult to reason

about, thus we left their derivation entirely to experiments.

We only mention that these limits are connected with the
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minimum hop number of a path in a relation (since all

the links have the same loss ratio). Since the nodes are

interconnected quite randomly in BRITE, the minimal hop

length of a path should not highly grow with the growth

of the number n of nodes. Hence, the feasibility limit of

loss1 or loss2 should not depend essentially on n. We

derive them for two different ns, for certainty.

6.4. Construction of Experiments

The default values for the key parameters taken in the series

of experiments were following: n = 30, capacity1= 0.005,

capacity2= 0.5, traffic1=1, traffic2=4 delay1=

= 3, delay2=3, loss1=10−4, loss2=10−4. That were set

loosely, i.e. far from the limits of problem feasibility.

The series of experiments consisted in changing selected

key parameters from the defaults while the remaining key

parameters were kept equal to their defaults. The following

series were present:

1. Changing delay2 – from 0.75 to 2 with step 0.25.

One goal of this series was to observe the heaviness

of the reaction of the solver computation time and

the solution infeasibility on breaking feasibility limits

while the other demands are set loosely. A second

goal was to examine the values of these feasibility

limits experimentally.

2. Changing traffic2 – from 10 to 2 with step 2. The

goals were analogous to that of series 1.

3. Changing loss2 – from 10−4 to 6 · 10−4 with step

10−4, with analogous goals.

4. Changing loss2 also from 10−4 to 6 ·10−4 with step

10−4 but for n = 100 nodes (and the remaining key

parameters set to the defaults, as before).

5. Changing the number n of nodes: experiments for

n = 10, 30, 100, 300, 1000, to examine the influence

of the number of nodes on the computation time un-

der a large network overdimensioning. The feasibility

limits should not depend much on n. The heuris-

tic reasoning about them does not depend essentially

on n. Some extra experiments, not presented here,

also indicate this.

6. Changing n; experiments for n=10, 20, 100, 300,

1000 as well, however, with delay1=delay2=1.75,

loss1=loss2=6 ·10−4, traffic1=1, traffic2=9.

This series brings more demands closer to the fea-

sibility limits, keeping them far from the limits re-

spectively by the factor about 1.5 (or 1/1.5 for traffic

demands). Note that the constraints induced by par-

ticular demands are not independent. Thus setting

all of them to their feasibility limits would probably

give an infeasible problem. Thus, with the settings of

this series, we are even closer to the feasibility limits

than “by the factor of 1.5” and we present a harder

problem to the solver.

The setting of delay1 delay2, loss1, loss2 are

quite clear. Setting traffic1=3 and traffic2=7

gives the sum of traffic1 and traffic2 about

10 but the traffic1 is not quite negligible (one

must, however, remember that that now the traffic in

a relation can be essentially split into two paths, real-

izing two CoS and thus the heuristic reasoning about

the feasibility limits alters and we get slightly more

distant from these limits).

7. Changing n; experiments for n = 10, 20, 100, 300,

1000 as well, however, with delay1=delay2 =

= 1.5, loss1=loss2 = 4.5 · 10−4, traffic1 = 1,

traffic2= 11.5. This series brings even tighter de-

mands, distant from their limits by the factor 1.1–1.2.

6.5. Experiment Results

The experiments were done on a Dell PC with the Pentium

4 2.8 GHz CPU and with 1 GB RAM, under the Fedora

Linux.

For a final solution ( � ?,φ?), (where p? ∈ {P1, . . . ,PK},
φ? ∈ � n we define its traffic infeasibility – as the excess

of the link capacity by the found intra-domain paths and

its delay (loss) infeasibility – as the summary violation of

delay (loss) over all the commodities: “traffic inf.”=ρ( � ),

“delay inf.”=
K

∑
k=1

max

((
∑

eon � ?
k

χc(k),e,1

)
− χ̆k,1,0

)
,

“loss inf.”=
K

∑
k=1

max

((
∑

eon � ?
k

χc(k),e,2

)
− χ̆k,2,0

)
.

The results of experiments are shown in Tables 1 through 4.

The dependence the computation time on the number n

Table 1

Influence of delay2 (series 1)

delay2 Time [s] Traffic inf. Delay inf. Loss inf.

0.75 3.67 0 3.48 0

1 3.62 0 1.46 0

1.25 1.23 0 0 0

1.5 1.21 0 0 0

1.75 1.25 0 0 0

2 1.21 0 0 0

Table 2

Influence of traffic2 (series 2)

traffic2 Time [s] Traffic inf. Delay inf. Loss inf.

10 1.22 0 0 0

12 1.26 0 0 0

14 1.23 0 0 0

16 3.72 4 0 0

18 3.64 18.2 0 0

20 3.62 30.2 0 0

22 3.62 42.2 0 0
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Table 3

Influence of loss2

loss2 Time [s] Traffic inf. Delay inf. Loss inf.

n = 30 (series 3)

0.00001 3.63 0 0 0.00034

0.00002 3.66 0 0 0.00008

0.00003 3.65 0 0 0.00002

0.00004 1.2 0 0 0

0.00005 1.25 0 0 0

0.00006 1.22 0 0 0

n = 100 (series 4)

0.00001 13.21 0 0 0.00038

0.00002 13.27 0 0 0.00014

0.00003 13.19 0 0 0.00004

0.00004 4.41 0 0 0

0.00005 4.43 0 0 0

0.00006 4.44 0 0 0

Table 4

Influence of n for a varying tightness of the demands

n Time [s] Traffic inf. Delay inf. Loss inf.

Series 5

10 0.4 0 0 0

30 1.26 0 0 0

100 4.42 0 0 0

300 15.28 0 0 0

1000 60.6 0 0 0

Series 6∗)

10 0.4 0 0 0

30 1.22 0 0 0

100 4.42 0 0 0

300 15.38 0 0 0

1000 62.09 0 0 0

∗) delay1=delay2 = 1.75, loss1=loss2 = 5 ·10−4 ,

traffic1 = 1, traffic2 = 9)

Series 7∗∗)

10 0.4 0 0 0

30 1.42 0 0 0

100 4.42 0 0 0

300 45.78 8.5 0 0.000365

1000 180.63 6.5 0 0.000305

∗∗) delay1=delay2 = 1.5, loss1=loss2 = 4.5 ·10−4 ,

traffic1 = 2, traffic2 = 11.5)

of nodes for various demand settings is also illustrated in

Fig. 3 (unless mentioned the key parameters have their de-

fault values).

The solver proved able to solve the problem even for a do-

main with a thousand of nodes within a time fully accept-

able for an off-line management. Feasible solutions were

1000
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T
im

e 
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series 5 (loose demands)

series 7 (even tighter demands)
series 6 (demands near limits)

Fig. 3. Influence of n for a varying tightness of the demands.

returned in a similar time when the network overdimension-

ing was large and when many of the demands were situated

close the problem feasibility limits, i.e. the network overdi-

mensioning was small.

The practical dependence of computation time on n was

slightly more than linear. This is consistent with the the-

oretical value assumed the solution is already found in

phase 1. Note (11) with the default Θ I , Θ II , with constant

K and m ∼ n yields the solution time that depends on n
like O(n logn). Another reason why the time grew slightly

quicker than linearly was that the realization of some ar-

rays (C++ Maps) raised a nonconstant array element access

time.

When the demands were set so tightly that the solver could

not obtain a feasible solution (so phase 2 was present),

the computation time did not grow much, which could be

expected by the construction of the stopping criterion for

phase 2. The growth was about 3–4 times through the ex-

periments and the time remained pretty acceptable in terms

of its absolute values.

In the experiments where particular demands were grad-

ually tightened, the solution infeasibilities responded with

a gradual growth. Anyway, traffic, loss and delay infeasi-

bilities (whose definitions use summing over commodities)

were not big values compared with the applied shrinks in

delay2, loss2 or traffic2 multiplied by the number of

commodities (40). In series 7, the final infeasibilities that

appeared for big n values were neither large in such a view.

The experimentally obtained feasibility limits were 14–16
for traffic a demand (for one CoS, assumed the traffic de-

mand for the second class is small), 1–1.25 for a delay

demand, 3 ·10−4 . . .4 ·10−4 for a loss demand (the latest –

for two different ns). This was consistent with the outcome

of our heuristic reasoning about the limits and substantiated

the previously described settings for the limits taken in the

experiments.

7. Conclusions

The presented practical approach to the QoS-aware traffic

engineering based on a small level of network overdimen-
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sioning proved efficient in the experiments. Unlike sophis-

ticated optimization algorithms, our heuristics most often

exhibits a computation time a little-over-linear in the num-

ber of nodes and is able to tackle a thousand node network

within a pretty-acceptable time. It behaves well when a fea-

sible solution cannot be found.

Appendix A

Quality of the Weight-based Path

Scalarization

Lemma 1. We have a nonempty finite set Y ⊂ � k
−. Let

P be the set of nondominated (Pareto-optimal) points of

Y : P = {y ∈ Y : ¬∃z ∈ Y z � y}. Let W be the set of

maximizers of weighted sum scalarizing functions: W =
{w∈Y : ∃v∈ � k

+, v 6= 0 w∈Argxmaxy∈Y v>y}. Then ∀p∈
P
(

p ∈W ∨∃w? ∈W w? � p
)
.

Proof. By contradiction, we assume the negation of the

claim : ∃p ∈ P
(
(p+

� k
+)∩conv(W ) = /0

)
. So there exists

a hyperplane separating the convex sets p +
� k

+ and

conv(W ), and since p +
� k

+ is a (shifted) cone, the hy-

perplane can be chosen so as to contain the cone origin, p.

I.e, ∃s ∈ � k, s 6= 0,C ∈ � (
(∀x ∈ p+

� k
+, s>x+C≥ 0)∧s>

p + C = 0∧ ∀y ∈ conv(W )s>y +C < 0
)
. Vector s can-

not have a negative coordinate (if si were negative, then

p+ ei, which is in p+
� k

+, would give the negative value

of our separating function, i.e. s>(p + ei) +C < 0 would

hold; ei means the i-th versor). Thus the true sentence

∀w∈W s>w ≤ s>p contradicts, by the definition of W , to

p /∈W .

Theorem 1. We have a finite set Y = {y1, . . . ,yr} ⊂ � k
−

(with r ≥ 1). Let W = {w1, . . . ,wm} (with r ≥ 1), W =
{y ∈ Y : ∃v ∈ � k

+, 6= 0 y ∈ Argxmaxy∈Y v>y} be the set

of weighted-sum maximizers of Y . Let P = {P1, . . . ,Pn}
(with n ≥ 1), P = {y ∈ Y : ¬∃z ∈ Y z � y} be the set of

Pareto-optimal points of Y (note that both W and P must

be nonempty by definition). Then for each p ∈ P there

exists w ∈W such that

∀i = 1, . . . ,k |ωi| ≤ (k +1)|pi|. (12)

Proof. Take any p ∈ P. If p ∈W , the claim is obvious,

so further assume p /∈W . By Lemma 1 there exists ŵ ∈
conv(W ) such that ŵ� p. By Carathéodory’s Theorem ŵ
is a convex combination of at most k + 1 extremal points

of conv(W ). But each extremal point of conv(W ) is in W ,

so ŵ is a convex combination of at most k+1 points of W :

ŵ = α1v1 + . . .+αk′vk′ with 1≤ k′ ≤ k+1, α j ≥ 0, α 6= 0,

∑ j α j = 1, vi ∈W . For some j? there must be α j? ≥ 1/(k′).
Thus, bearing in mind that all v j

i are nonpositive, for each

i ∈ {1, . . . ,k} ŵi ≤ (1/k′) ·v j?
i , thus also ŵi ≤ 1/(k +1)v j?

i ,

v j?
i ≥ (k +1) · ŵ and, since w� p, v j?

i ≥ (k +1)pi.
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