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Abstract—Speech enhancement is one of the many challeng-

ing tasks in signal processing, especially in the case of non-

stationary speech-like noise. In this paper a new incoher-

ent discriminative dictionary learning algorithm is proposed

to model both speech and noise, where the cost function ac-

counts for both “source confusion” and “source distortion” er-

rors, with a regularization term that penalizes the coherence

between speech and noise sub-dictionaries. At the enhance-

ment stage, we use sparse coding on the learnt dictionary to

find an estimate for both clean speech and noise amplitude

spectrum. In the final phase, the Wiener filter is used to re-

fine the clean speech estimate. Experiments on the Noizeus

dataset, using two objective speech enhancement measures:

frequency-weighted segmental SNR and Perceptual Evalua-

tion of Speech Quality (PESQ) demonstrate that the proposed

algorithm outperforms other speech enhancement methods

tested.

Keywords—ADMM, l1 minimization algorithms, sparse coding,

speech enhancement, supervised dictionary learning.

1. Introduction

Digital speech is a communication tool that is most fre-

quently used by humans, especially with the proliferation of

Voice over the Internet (VoIP) telephony software. Speech

can be corrupted by various factors: noise (additive, mul-

tiplicative), reverberation (convolutive noise), and interfer-

ing speech. Speech enhancement aims to boost its quality.

This enhancement involves two quality factors: “speech

pleasantness”, which refers to how comfortable it is for hu-

mans to listen to the speech signal over a prolonged period

of time, and “speech intelligibility”, which refers to how

understandable the speech is (word error rate). Noise is

the most common factor that causes speech degradation.

Speech de-noising algorithms constitute a major part of the

enhancement methods that aim to extract a clean speech

signal from a noisy mix. It is a challenging task, as it is

hard to remove noise efficiently without distorting the clean

signal.

The problem we are tackling in this paper is single chan-

nel speech de-noising that deals with non-stationary noise.

Mathematically, this problem aims to reconstruct the clean

speech signal s(n), based on the received signal y(n) which

is an additive mixture of the two unknown signals: the clean

speech and a non-stationary noise signal i(n):

y(n) = s(n)+ i(n) . (1)

The significance of this problem is based on the fact that

communication takes place, nowadays, in noisy environ-

ments, such as at airports, in the street or inside a car. The

noise in these environments is non-stationary, which means

that its statistic values are changing over time. It is cru-

cial to provide the user with a good quality speech, so they

can understand others and listen to them comfortably, us-

ing communication tools, in these hostile environments. In

fact, there are many applications that use speech de-noising

algorithms in these adverse environments, such as mobile

communications, VoIP, hearing aids and speech recognition

software.

Traditional speech enhancement methods, like spectral sub-

traction (SS) [1], [2], Wiener filtering [3], statistical model-

based methods [4] and subspace methods Singular Spec-

trum Analysis (SSA) [5], [6] perform well in the case of

white noise, but have limited performance in the case of

non-stationary speech-like noise. SS is based on estimating

the noise power spectrum and subtracting it from the noisy

power spectrum. The main issue with SS is the generation

of isolated peaks in the estimated clean speech spectrum,

which is referred to as musical noise. Statistical model-

based methods assume that speech and noise obey some

probability distribution and propose a least square estima-

tor to estimate the signal. In both cases it is hard to find

a good estimate for the noise power spectrum in the case

of non-stationary noise. All these methods are unsuper-

vised, which means that they do not use any prior informa-

tion about the noise and speech. Recently, new supervised

methods incorporating prior information to build a model

for both speech and noise signals using training samples,

have been proposed. These methods achieve better results

than non-supervised methods.

Codebook-based approaches [7], [8], Hidden Markov

Model (HMM) based approaches [9]–[11], supervised non-

negative matrix factorization (NMF) [12]–[14] and sparsity-

based method [15]–[19] are examples of supervised speech

enhancement approaches. Srinivasan et al. [8] used vector

quantization to learn codebooks for both speech and noise
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LPC features. At the enhancement stage, the closest pair

in terms of minimum Itakaru-Saito distance between the

noisy power spectrum and linear combination of the speech

and noise pair is picked and used as estimators. Moham-

madabad et al. [14] proposed Bayesian NMF for speech

enhancement, where the training data is decomposed into

two matrices: bases matrix and activation matrix, while at

the enhancement stage the noisy mixture is projected on

the concatenation of the two matrices.

Motivated by the great success of the sparsity based

signal model achieved in many signal processing tasks,

and notably image de-noising [20], Sigg [15] proposed

using the approximate K-Singular Value Decomposition

(K-SVD) [21], [22] dictionary learning to model the am-

plitude spectrum of clean speech and noise separately, and

then concatenating both dictionaries in one to perform

speech enhancement.

Zhao et al. [16] proposed using the same K-SVD with

a non-negative constraint at the sparse coding stage to

learn a dictionary that models the Power Spectral Density

(PSD) of clean speech, and used the Least Angle Regres-

sion LARS algorithm [34] to find the sparse code of the

noisy speech on the learned dictionary. Then, the clean

speech PSD estimate is found based on multiplication of

the sparse code with the dictionary. Luo et al. [17] pro-

posed a complementary joint sparse representation, where

two mixture dictionaries to model “mixture and speech”

and “mixture and noise” are added to the Generative Dic-

tionary Learning (GDL) problem formulation, and sparse

codes of clean speech are forced to represent the noisy

mixture on the mixture and clean speech sub-dictionary,

while the sparse codes for the noise are forced to represent

the noisy mixture on the mixture and noise sub-dictionary.

Though this joint sparse representation alleviates, to some

extent, the problem of source confusion, it is characterized

by high complexity due to the need of learning four sub-

dictionaries instead of two.

In the previous studies, “signal approximation” only is con-

sidered in the cost function when learning the representative

dictionaries, while source confusion and incoherence be-

tween speech and noisy sub-dictionaries are not taken into

account in the dictionary learning process. Source confu-

sion means that part of the noise that is coherent with clean

speech will have sparse representation over the clean speech

dictionary (noise confusion), and part of the clean speech

will have sparse representation over the noise dictionary

(speech confusion), and thus, residual noise corresponding

to noise confusion might still exist in the estimated clean

speech at the enhancement stage, which will also suffer

from extra distortion from the original clean speech due to

the fact that part of it will be omitted as it will be consid-

ered as noise. Incoherence refers to the maximum corre-

lation between any two columns of speech and noise dic-

tionaries. As shown in [15], incoherence is directly related

to the degree of sparsity (number of non-zero elements)

needed for the speech and noise signals to achieve exact

recovery by their sparse projection on their corresponding

sub-dictionaries. High coherence means a low sparsity de-

gree, which cannot be verified in practice, and thus we are

interested in low coherence dictionary.

In this paper, we propose a new Incoherent Discrimina-

tive Dictionary Learning (IDDL) algorithm to model both

speech and noise jointly. We impose a coherence penalty on

the speech and noise sub-dictionaries in the cost function,

which also incorporates: a penalty for “speech confusion”

when learning the noise sub-dictionary, and a penalty for

“noise confusion” when learning the clean speech sub- dic-

tionary. We use the Alternating Direction Method of Mul-

tipliers (ADMM) [35] to solve the two sub-dictionaries’

learning optimization problems.

The paper is organized as follows. In Section 2 a review

of the main problems is provided: dictionary learning al-

gorithms and speech enhancement using sparse coding. In

Section 3, the proposed IDDL algorithm is described, along

with the overall proposed speech enhancement system. In

Section 4, the conducted experiments and their results

are presented. Section 5 summarizes and concludes the

paper.

2. Problem Review

Y ∈ R
N×n is the matrix whose columns are the n training

samples yi ∈ R
N (N is the dimension of the input signals.

In the context of speech enhancement, the input signals yi
are the amplitude spectrum of every speech frame i, and

thus, N is the number of FFT coefficients1), D ∈ R
N×K

is the dictionary matrix whose columns are K prototype

signals that can represent signals of interests sparsely (i.e.

using a linear combination of a low number of these proto-

type signals denoted by di), X ∈ R
k×n is the matrix whose

columns xi ∈ R
K are the sparse codes of yi. In our setting,

Y contains the extracted features (amplitude of FFT coef-

ficients) of the training audio frames (either clean speech

or noise), composed of Ys ∈ R
N×ns speech training sam-

ples (ns is the number of clean speech training frames), and

Yn ∈ R
N×nn the noise training samples (nn is the number

of noise training frames). Xs ∈ R
K×ns is the sparse codes

of Ys, and Xn ∈ R
K×nn the sparse codes of Yn. D is the

concatenation of Ds ∈ R
N×L and Dn ∈ R

N×L the dictionary

matrices for representation of the clean speech signal and

the noise signal, respectively. They have the same number

of columns denoted by L. Clearly in this case = 2L, and

the total number of training samples n = ns + nn. Xs
s are

the sparse coefficients of Xs on Ds, Xn
s are the sparse co-

efficients of Xs on Dn.Xn
n are the sparse coefficients of Xn

on Dn, and Xs
n are the sparse coefficients of Xn on Ds.

2.1. Dictionary Learning

Sparsity-based signal model approximates a signal by a lin-

ear combination of a few basic signals out of a larger col-

lection of signals that form what is called the dictionary. In

1 In fact we take only half of the number of FFT coefficients because of

symmetry, so N = NFFT
2 +1.
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a classic dictionary learning problem, we seek a matrix D
whose columns are the basic signals that can represent, as

close as possible, the training signals yi sparsely:

min
D,X

n

∑
i=1

∥

∥yi −Dxi
∥

∥

2
2 s.t. ∀ i,

∥

∥xi
∥

∥

0 ≤ k , (2)

where k is the maximum number of non-zero elements

in xi, ‖xi‖0 is `0 a pseudo norm which represents the num-

ber of non-zeros in xi. X is the matrix composed of all the

sparse codes xi.

This optimization problem is non-convex when both D and

X are unknown, however it becomes convex if one of D or

X is fixed – that is why it is generally solved iteratively by

fixing the dictionary D and updating sparse codes X, and

then fixing X and updating D.

In fact, dictionary learning is a generalization of the

k-means clustering algorithm [21], the only difference is

that in k-means, each training signal is forced to use only

one “atom” from the dictionary (the closest cluster center),

as its representative, while in dictionary learning each sig-

nal is allowed to use multiple dictionary atoms, provided

that it can be approximated by a linear combination of these

atoms, and that this linear combination uses as few the dic-

tionary atoms as possible.

In k-means, we iterate between finding the representative of

each training signal (the cluster center which is equivalent

to the dictionary atom that minimizes the suitable metric

distance), and updating the cluster centers. However, dictio-

nary learning is solved by iterating between two stages [21].

First, the dictionary is fixed and the sparse code xi for each

training signal is calculated using any sparse coding solver.

Then, the sparse code is fixed and the dictionary atoms are

updated to minimize the cost function.

The method used to update the dictionary atoms is the

key difference between individual dictionary learning algo-

rithms. Some dictionary learning methods update, in each

iteration, the whole set of atoms. This is the case in one of

the early and simple dictionary learning solutions – Method

of Optimal Direction (MOD) [23], which updates the whole

dictionary using the closed form of the Mean Squared

Error (MSE) estimator:

D = YXT (XXT )−1 . (3)

Other dictionary learning algorithms update the dictionary

atoms successively, one by one, as is the case in the very

famous and successful dictionary learning algorithm known

as K-Singular Value Decomposition (K-SVD) [21]. At

the sparse coding stage, K-SVD uses greedy Orthogonal

Matching Pursuit (OMP) [32], [33] to find the sparse code

for each training sample. At the dictionary update stage,

in turn, for each dictionary atom dk, K-SVD selects only

those training samples that use this atom, which will be

denoted as xk, and splits the representation error E into

two components: the sparse representation on dk, and the

residual error Ek that accounts for the sparse presentation

error using all the dictionary atoms other than dk:

E =
∥

∥

∥
Y−DX

∥

∥

∥

2

F
=
∥

∥

∥
Y−

K

∑
i=1

di xi
T

∥

∥

∥

2

F

=

∥

∥

∥

∥

(

Y−∑
i6=k
i=1

di xi
T

)

−dk xk
T

∥

∥

∥

∥

2

F
=
∥

∥

∥
Ek −dk xk

T

∥

∥

∥

2

F
, (4)

where xi
T represents the sparse coefficients corresponding

to the atom di, which is the i-th row of the matrix X. As

the rows xk
T are all zeros except for the indexes of the test

examples in Y that use atoms dk dkxk
T does not affect the

whole Ek, but only the restricted ER
k which is composed

of the columns of Ek that correspond to the examples that

use dk.

To update dk and xk
T in a way that minimizes the restricted

error ER
k (which is the only part of the total error repre-

sentation E that is affected by atom dk), K-SVD evaluates

the Singular Value Decomposition (SVD) for ER
k = U∆∆∆VT

(where U and V are orthonormal matrices, and ∆ is a di-

agonal matrix with non-negative elements on the diago-

nal known as eigen values), and updates dk with the first

column of U, simultaneously updating the corresponding

sparse coefficients xk
T as the first column of V multiplied

by ∆∆∆(1,1) [21].

The cost function in Eq. (4) measures the representation

power of dictionary D only. In the case of a classification

task, discriminative power of the sparse code x should be

considered. This leads to a new trend in dictionary learning

algorithms called “discriminative” or “supervised” dictio-

nary learning in which the cost function reflects both the

representation and classification error. Suo [24] has pro-

posed the most general formulation of the discriminative

dictionary learning problem, given below:

min
D,X

n

∑
i=1

(∥

∥yi−Dxi
∥

∥

2
2 +λ1

∥

∥xi
∥

∥

1

)

+λ2 fx(X)+λ3 fD(D) , (5)

where fX(X) is a function that measures the discriminative

power of the sparse codes X, and fD(D) is a function that

measures the discrimination power of the atoms of D.

Discriminative dictionary learning algorithms fall into one

of three categories, depending on the values of λ2, λ3.

In the first category (λ3 = 0), a dictionary shared by all

classes is learned, while forcing the sparse codes to be dis-

criminative. For example, Mairal et al. [25] proposed to

add a logistic loss function to the sparse code, as a dis-

criminative measure. Zhang et al. proposed Discriminative

K-SVD (D-KSVD) [26] that adds a linear regression term

to learn a linear classifier on the sparse coefficients to the

objective function in the dictionary learning problem for-

mulation (6), while in the case of label consistent-KSVD

(LC-KSVD) [27], a label consistency term is added that

measures how consistent the sparse codes are with the class

labels.

In the second category (λ2 = 0), only the discriminative

power of the dictionary atoms is considered. For example,
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Ramirez et al. [28] proposed learning class-specific sub-

dictionaries for each class with a structural incoherence

penalty term to make the sub-dictionaries as independent

as possible.

A hybrid discriminative dictionary learning forms the third

category, where both the dictionary atoms and the sparse

codes are forced to be discriminative (λ2 6= 0, λ3 6= 0). It is

the case in the COPAR dictionary learning algorithm [29]

and Fisher discriminative dictionary learning (FDDL) [30].

FDDL uses label information both in the dictionary update

and sparse coding stage. In FDDL, the sparse codes of

the training samples are forced to have low within-class

scatter, but large between-class scatter. Also, each class-

specific sub-dictionary is forced to have good reconstruc-

tion capability for the training samples from that class, but

poor reconstruction capability for other classes. Therefore,

both the representation residual and the representation co-

efficients of the query sample are discriminative. Thus,

the dictionary learning optimization problem is formulated,

in FDDL, as follows:

min
D,X

r(Y,D,X)+λ1
∥

∥X
∥

∥

1 +λ2 fX(X)

s.t.
∥

∥di
∥

∥

2 = 1, ∀ i ∈ {1 . . .L} , (6)

where r(Y,D,X) is a cost function that measures the dis-

criminative power of dictionary D, ‖X‖1 is the sparsity in-

ducing term, and fX(X) is the cost function that measures

the discriminative power of the sparse codes X.

The cost function that imposes discrimination of atoms of

dictionary D is defined as:

r(Yi,D,Xi)=
∥

∥Yi−DXi
∥

∥

F +
∥

∥Yi−DiXi
i
∥

∥

F +
C

∑
j=1
j 6=i

∥

∥D jX j
i

∥

∥

2
F ,

(7)

where ‖A‖F =
√

∑i ∑ j a2
i j is the Frobenius norm, C is the

number of classes, Yi is the matrix composed of a train-

ing sample of class i, Xi is their corresponding sparse

codes over the total dictionary D. D j is the sub-dictionary

representing the samples of class j. The first term in “r”

represents the total representation error of samples Yi (of

class i) over the total dictionary D, and the second term rep-

resents the representation error of Yi over the i-class spe-

cific sub-dictionary Di, while the third term represents the

contribution of sub-dictionaries other than Di in the sparse

representation of samples Yi, which should be small, as

those samples belong to a different class, and it accounts

for the confusion error in the case of source separation.

Function fX(X) is a cost function that imposes discrim-

ination on the sparse codes X according to the Fisher

discrimination criterion, which means that the sparse

codes X should have minimum within-class scatter denoted

by SW (X), and maximum between-class scatter denoted

by SB(X). A regularization term that shrinks ‖X‖2
F is added

to make fX(X) more smooth and convex [30]:

fX(X) = tr
(

SW (X)
)

− tr
(

SB(X)
)

+η
∥

∥X
∥

∥

2
F , (8)

where:

SW (X) =
C

∑
i=1

∑
xk∈Xi

(xxxk −mmmi)(xxxk −mmmi)
T , (9)

SB(X) =
C

∑
i=1

ni(mmmi −mmm)(mmmi −mmm)T . (10)

In the above equations, mmmi is the mean of sparse codes Xi,

mmm is the mean of all sparse vectors X, ni is the number

of samples that belong to class i, η is a regularization

parameter that controls the energy of the samples, tr is the

matrix trace operator.

2.2. Speech Enhancement using Sparse Coding

Sigg [15] proposed a supervised speech enhancement

method based on learning two dictionaries, one for clean

speech and the other for noise, according to the following

formulations:

min
Ds,Xs

∥

∥Ys −DsXs
∥

∥

2
F , ‖Xs‖0 ≤ ks , (11)

min
Dn,Xn

∥

∥Yn −DnXn
∥

∥

2
F , ‖Xn‖0 ≤ kn . (12)

Sigg proposed GDL to solve each of the previous prob-

lems. GDL is, in fact, a variation of the approximate

K-SVD [22], the only difference is at the sparse coding

stage. Sigg proposed least angle regression with coherence

criterion (LARC) [15] for sparse coding, instead of the

greedy orthogonal matching pursuit (OMP) [33]. LARC

is a variation of LARS [34], where the coherence between

the residual error and the dictionary is used as the stop-

ping criterion instead of the l2 norm of the residual er-

ror. It has been found that LARC has several advantages

over OMP. First, LARC is insensitive to changes in signal

energy, as the stopping criterion is related to residual co-

herence and not to the amplitude of the error. Second, as

LARC uses the l1 norm, which not only penalizes the num-

Fig. 1. Columns of X are the sparse codes of Y on dictionary D.

The sparse coefficient where there is C, means coefficients which

cause confusion.
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ber of non-zero coefficients (as in the case of l0 pseudo

norm that OMP uses) but also penalizes their magnitudes.

This increases the temporal smoothness of the enhanced

speech [15].

There are two problems with GDL. First, the two sub-

dictionaries Ds and Dn are learnt independently – see

Eqs. (11) and (12), and thus the source confusion error is

not considered. Figure 1 illustrates speech and noise con-

fusion. The second problem is the coherence between Ds
and Dn that is also not considered in the learning process.

These problems will be addressed in our DL algorithm

proposed below.

3. IDDL Algorithm

The proposed dictionary learning algorithm defines a new

cost function that penalizes coherence between the speech

and the noise sub-dictionaries ‖DT
s Dn‖

2
F , source confusion

‖DnXn
s‖

2
F and noise confusion ‖DsXs

n‖
2
F . The proposed

algorithm iterates between three steps, after initializing

the dictionary, sparse coding using LARC is performed –

Eq. (13), then both X and the noise sub-dictionary Dn are

fixed, while the speech sub-dictionary Ds is updated using

Eq. (14), and in the third step both X and speech sub-

dictionary Ds are fixed, while the noise sub-dictionary Dn
is updated using Eq. (15).

1. Update X (D− [Ds,Dn] fixed):

X = min
X

∥

∥Y−DX
∥

∥

2
F +λl

∥

∥X
∥

∥

1 (13)

2. Update Ds (X,Dn fixed):

Ds =min
Ds

∥

∥Ys−DsXs
s

∥

∥

2
F +λnc

∥

∥DsX s
n

∥

∥

2
F +λc

∥

∥DT
nDs
∥

∥

2
F

(14)

3. Update Dn (X,Ds fixed):

Dn =min
Dn

∥

∥Yn−DnXn
n
∥

∥

2
F+λsc

∥

∥DnXn
s
∥

∥

2
F+λc

∥

∥DT
s Dn

∥

∥

2
F

(15)

The λnc, λsc, λc ≥ 0 are regularization parameters to control

the importance of noise confusion, speech confusion, and

sub-dictionary coherences, respectively.

We propose to use the alternating direction method of mul-

tipliers (ADMM) [35] to solve Eqs. (14) and (15). First,

we introduce an auxiliary variable Z with an equality con-

strained Z = Ds:

Ds = argmin
Ds,Z

+
∥

∥Ys −DsXs
s
∥

∥

2
F +λnc

∥

∥DsXs
n
∥

∥

2
F

+λc
∥

∥DT
n Z
∥

∥

2
F , Z = Ds . (16)

We can see that Eq. (16), which is exactly equivalent to

Eq. (14), is in the form that the ADMM algorithm solves.

Next, we introduce the dual Lagrangian variable U, and

a scaling parameter p, to formulate the augmented La-

grangian, which is a function of the three variables, denoted

as follows:

Lρ(Ds,Z,U) =
∥

∥Ys−DsXs
s
∥

∥

2
F +λnc

∥

∥DsXs
n
∥

∥

2
F

+λc
∥

∥DT
n Z
∥

∥

2
F +U(Ds−Z)+

ρ
2

∥

∥Ds−Z+U
∥

∥

2
F . (17)

According to ADMM, problem given by Eq. (16) can be

solved by alternatingly updating, one at a time, each vari-

able in Eq. (17), to minimize the augmented Lagrangian,

while fixing the others. With an initial Z0 = U0 = D0
s (the

upper-script denotes the iteration time index), we alterna-

tively solve the following problems until convergence is

achieved:

Dt+1
s =min

Ds

∥

∥Ys−DsXs
s
∥

∥

2
F +λnc

∥

∥DsXs
n
∥

∥

2
F +λc

∥

∥DT
n Zt
∥

∥

2
F

+Ut(Ds −Zt)+
ρ
2

∥

∥Ds−Zt +Ut∥
∥

2
F , (18)

Zt+1 =
(

2λcDnDT
n +ρI

)−1(Dt+1
s +UT) , (19)

Ut+1 = UT +ρ
(

Dt+1
s −Z t+1) . (20)

After some matrix manipulation, we can easily see that

Eq. (19) is equivalent to the following problem:

Dt+1
s = min

Ds
tr
(

DT
s DsA

)

−2tr
(

DT
s B
)

, (21)

where

A = Ys.
(

Xs
s
)T

+
ρ
2
(

Zt −Ut) ,

B = Xs
s
(

Xs
s
)T

+λncXs
n
(

Xs
n
)T

+
ρ
2

I .

We can solve Eq. (21) using the same dictionary update

algorithm as proposed by Mairal et al. [37] in online dic-

tionary learning (ODL). This dictionary update algorithm is

based on block-coordinate descent with warm start, which

enjoys being parameter-free [37]. The same procedure pro-

cedure applies to the problem of learning the noise sub-

dictionary Dn (Eq. (15)). Algorithm 1 describes the IDDL

algorithm, while Algorithm 2 describes how sub-dictionary

is updated using ADMM.

Algorithm 1: IDDL

Input: Ys ∈ R
N×ns ; Yn ∈ R

N×nn ;L;max iter1; µ;λnc;λsc;λc
Output: D ∈ R

N×2L

1: Initialize D0
s , D0

n
D = [D0

s , D0
n]

2: Y = [Ys, Yn]
3: For t = 1 to max iter1 do

4: X = LARC(D, Y, µ)
5: Update Ds using Algorithm 2, i = 1, j = 2, λ = λnc
6: Update Dn using Algorithm 2, i = 2, j = 1, λ = λsc
7: D = [Ds, Dn]
8: End for
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Algorithm 2: Sub-dictionary update

Input: Ys; Yn; Xs; Xn; L; D ∈ R
N×2L; i; max iter2; λ ; λc; ρ

Output: Di ∈ R
N×L

1: D0
i = D(:,(i−1).L +1 : i.L)

D j = D(:,( j−1).L +1 : j.L)
2: initial Z0 = U0 = D0

i
3: Xi

i = Xi
(

(i−1).L +1 : i.L, :
)

Xi
j = X j

(

(i−1).L +1 : i.L, :
)

4: For t = 1 to max iter 2 do

5: Update Dt
i using Algorithm 2 in [37], where:

A = Yi.(Xi
i)

T + ρ
2 (Zt −Ut),

B = Yi.(Xi
i)

T +λXi
j(X

i
j)

T + ρ
2 I

6: Z t+1 = (2λcD jDT
j +ρI)−1(Dt+1

i +U t )

7: U t+1 = U t +ρ(Dt+1
i −Zt+1)

8: End for

It should be noted that IDDL differs from FDDL in four

aspects. First, we do not impose discrimination on the

sparse codes X (i.e. λ2 = 0). Second, the confusion error

terms are weighted with regularization parameters. Third,

a coherence penalty term is added to the DL formulation,

and last, LARC is used at the sparse coding stage, instead

of the fast iterative shrinkage and thresholding algorithm

(FISTA) [36].

3.1. Speech Enhancement System based on DL

The overall speech enhancement system is depicted in

Fig. 2. The system consists of two stages: training and

enhancement. During the training phase, we learn the

IDDL dictionary that models the amplitude spectrum of

the training speech and noise samples. The amplitude of

the short time Fourier coefficients (STFT) for the overlap-

ping time frames of the clean speech and noise training

signals is calculated after applying the Hamming window.

The amplitude spectrum coefficients for all training frames

are concatenated as columns to form Ys and Yn, and fed

to the IDDL algorithm that learns the clean speech sub-

Fig. 2. The overall speech enhancement system.

dictionary Ds, and the noise sub-dictionary Dn. These two

sub-dictionaries are concatenated together to form the over-

all dictionary, that contains 2L columns.

At the enhancement phase, using LARC and the dictio-

nary D, the sparse codes X for the amplitude spectrum

coefficients of the overlapping frames of the noisy signal

are calculated. The sparse code vectors X contain 2L coeffi-

cients. The first L ones Xs that correspond to sub-dictionary

Ds are separated from the last L ones Xn that correspond

to sub-dictionary Dn. By multiplying Xs and Ds, as well

as Xn and Dn we get an initial estimation for the amplitude

spectrum of the clean speech and noise signals, respec-

tively. These initial estimations are fed to the Wiener filter

to find the final clean speech amplitude spectrum estima-

tion. Finally, we apply the inverse Fourier transform to

the estimated amplitude spectrum combined with the noisy

phase spectrum to get the estimated clean speech.

4. Experiments

4.1. Noizeus Dataset

Noizeus [38] is a noise database that contains 30 IEEE

sentences produced by three male and three female speak-

ers, with 5 different sentences per speaker. The sentences

are corrupted by eight different real-world noises at differ-

ent SNRs: (0, 5, 10, 15) dB. The noise was taken from the

Aurora database and includes suburban train noise, babble,

car, exhibition hall, restaurant, street, airport and train sta-

tion noise [38]. All speech and noise signals are sampled

at 8 kHz.

As the database contains a small number of speakers, and

to assure speaker independent cases, which means that the

speakers in the training set are different from the speakers

in the test set2, we have divided the dataset into two sets:

a training set that contains three speakers and another test-

ing set that contains the remaining three speakers. We have

created 12 training/test sets through permutations3 of three

speakers out of 6, and averaged the results. Table 1 shows

the list of speakers and their characteristics [40], while Ta-

ble 2 shows the speakers in the 12 different training/test

sets we have created for experiments.

All training sets contain male and female speakers, except

for the training set number 11, which is all female speakers

(speakers 3, 4, and 6) while the corresponding test set is

all male (speakers 1, 2, and 5), and the training set number

12 which is all male, while the corresponding test set is all

female. The first 5 training set contain 2 male speakers and

2 A speaker-independent scenario enables the proposed system to use

any available clean speech samples as the training set, not necessarily

pertaining to the speaker whose speech we wish to enhance, contrary to

the speaker-dependent scenario.
3 Permutation of 3 speakers out of 6 gives 20 sets. For our experiments

we took only 10 sets that contain both male and female speakers, to

calculate the average PESQ and fwSegSNR. We conducted the experiment

using set number 11 (see Table 2) that contains a female speaker only, and

set number 12 that contains a male speaker only, to see if the gender of the

speakers in the training set has any impact on the performance achieved.

The average does not include results for test groups 11 and 12.
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Table 1

Noizeus speaker’s characteristics

Pitch

Speaker Gender frequency Age State raised Sentences

F0 [Hz]

1 M 135 21 Texas sp1–sp5

2 M 134 20 California sp6–sp10

3 F 225 19
North Carolina

sp11–sp15
and Texas

4 F 245 22 Texas sp16–sp20

5 M 144 20
Texas and

sp21–sp25
Kentucky

6 F 225 22 Texas sp26–sp30

Table 2

Description of different training and test sets

Train/test set
Speakers in the Speakers in the

training set test set

1 [1, 2, 3] [4, 5, 6]

2 [1, 2, 4] [3, 5, 6]

3 [1, 2, 6] [3, 4, 5]

4 [2, 3, 5] [1, 4, 6]

5 [2, 4, 5] [1, 3, 6]

6 [1, 3, 4] [2, 5, 6]

7 [2, 3, 4] [1, 5, 6]

8 [3, 4, 5] [1, 4, 5]

9 [3, 4, 6] [1, 2, 6]

10 [4, 5, 6] [1, 2, 3]

11 [3, 4, 6] [1, 2, 5]

12 [1, 2, 5] [3, 4, 6]

1 female, while the other 5 training sets contain 2 female

speakers and 1 male.

For every training set, we collect 15 sentences (15 clean

recordings and 15 noisy recordings of a specific type

of noise) uttered by the 3 chosen speakers. To have the

noise training samples (that belong to the specific type,

e.g. a car), we subtract the clean speech recordings from

the noisy recordings within the training dataset, and thus

we get 15 recordings per noise4. Every recording (clean

speech and noise) is divided into overlapping frames that

are 128 ms long, with a ratio of 75% (overlapping length of

96 ms). After applying the hamming window to these clean

speech and noise frames, we calculate the FFT coefficients

of these overlapped windows, and stack them together as

columnar vectors to form the training matrices Ys (the am-

plitude of the FFT coefficients of the clean speech frames)

and Yn (the amplitude of the FFT coefficients of the clean

speech frames). The same procedure is applied to noisy

signals at the enhancement stage.

4 In the general case, noise samples can be obtained either through

a voice activity detector (VAD) from non-speech segments, or from an

offline noise database like Noisex-92 [43].

4.2. Performance Metrics

There are two types of measures to assess the performance

of speech enhancement algorithms: subjective measures

and objective measures. Subjective measures are scores

reported by human listeners participating in a subjective

listening test. The mean opinion score (MOS) [40] is a re-

sult, on the scale from 1 to 5, that a human listener de-

cides to use to express their satisfaction with the quality

of speech they are listening to. Due to the high logistic

costs needed to perform subjective listening tests, objective

measures were sought.

Frequency weighted segmental SNR (fwSegSNR) is the es-

timated mean frequency domain SNR over all time frames,

with a perceptually motivated frequency band weighting.

fwSegSNR may be calculated according as follows:

fwSegSNR =
10
Nw

N

∑
n=1

B

∑
b=1

wb log
|S(b,n)|2

(|S(b,n)|− |Ŝ(b,n|)2
,

(22)

where S(b,n) are the complex FFT coefficients of the clean

speech, n is the frame index, b is the frequency component

index, N is the total number of frames in the speech signal,

B is the total number of frequency components, wb is the

corresponding frequency weighting, w is the sum of all the

frequency weights, and Ŝ(b,n) are the estimated complex

spectrum coefficients of the enhanced speech.

PESQ [39] is an international measure that simulates MOS,

and is widely used to assess the quality of speech con-

veyed through a telephone network. Its derivation may be

found in [39]. It has been shown that PESQ has the highest

correlation coefficient (ρ = 0.89) with the overall speech

quality [41], and correlates well with subjective speech in-

telligibility [42], while fwSegSNR has the second high-

est correlation coefficients with the overall speech quality

(ρ = 0.85) [41], and correlates well with subjective speech

quality [42]. That is why we have used these two measures

to assess performance of the proposed algorithm. It should

be emphasized that speech quality does not correlate with

speech intelligibility, as it is the case of synthesized speech,

which generally has low quality, though it could be highly

intelligible. We have used the implementation provided

by [40] for both fwSegSNR and PESQ.

4.3. The Results

To assess the performance of the proposed IDDL algorithm,

we compared its performance in terms of fwSegSNR and

PESQ against three other different DL algorithms: K-SVD,

GDL, and FDDL. We have used the same speech enhance-

ment system as depicted in Fig. 2, but with the different

DL algorithms mentioned.

Different frame lengths were investigated starting with 256

up to 1024 samples (from 32 to 128 ms) with the overlap-

ping rate of 50–75%. We have found that longer frames

always render better results. This increases the dimensions

of the feature space and, thus, results in a lower coherence

between the clean speech and noise sub-dictionaries, which

48



Incoherent Discriminative Dictionary Learning for Speech Enhancement

means a lower source confusion error. Longer enhancement

time is a disadvantage of using the longer frame length, as

increasing the dimensions of the signal feature space N will

increase the time needed for sparse coding.

The number of DFT coefficients varied as well. In one

scenario we chose the number of DFT coefficients as the

same number of samples in the frame, while for short frame

lengths we tried zero padding and used 1024 DFT coeffi-

cients, but it was not useful. This is because it does not

really increase the dimension of the feature space, as the

information content is the same.

The regularization parameters λnc, λsc, λc are set through

a validation test. We found that the optimal experimental

values in our setting are: λnc = 1, λsc = 1, λc = 0.0001.

For LARC, the stopping residual coherence thresholds is set

at µ = 0.15 in IDDL and GDL at the training stage, while

it’s set at µ = 0.1 for sparse coding at the enhancement

stage, as described in [15]. We have verified experimen-

tally that those values of µ are optimal for the performance

of the proposed system, for all noise types except for the

case of white noise and car noise. We have found that

using a lower value of µ = 0.05 for sparse coding ren-

ders better performance for all dictionaries studied, in the

case of car noise and white noise. This is due to the fact

that both types of noise experience lower confusion levels

(non-speech-like noise) with clean speech signal than other

types of speech-like noise, and using a lower value of µ
(which means a lower approximation error) will not cause

the confusion error to increase. This hints that we can use

a dynamic value for µ based on the initial value of the

speech confusion error.

For FDDL, we have used the efficient implementation pro-

vided by [31] and denoted by E-FDDL. There are two pa-

rameters to tune E-FDDL: FISTA l1 regularization param-

eter which is set to λ1 = 0.05, and Fisher discrimination

regularization parameter λ2 = 0.01, Eq. (6).

The number of maximum iterations for KSVD is set to 15,

for E-FDDL it is set to 7, and for GDL it is set to 20.

The number of maximum iterations (max iter1 in Algo-

rithm 1) for IDDL is set to 7. In fact we have tested dif-

ferent values in the range of {3 . . .25} for this parameter.

We noticed that increasing the number of maximum iter-

ations over 7 minimizes all sub-costs: source distortion,

noise distortion, source confusion, noise confusion and

sub-dictionaries coherence even further (see Figs. 6–10),

but the resulting dictionary does not perform better on the

testing set. This is due to the fact that the model (the dic-

tionary) becomes over-fitted to the training set and does not

generalize well.

For initializing IDDL (D0
s , D0

n), we have investigated two

scenarios: either to build two initial dictionaries composed

of random samples from the training set, or to initialize

IDDL with two prebuilt K-SVD dictionaries, one for clean

speech and one for noise. We have noticed that IDDL with

a random initial dictionary has no performance gain over

the other studied DL methods, while IDDL with initial pre-

built K-SVD dictionaries achieves superior performance.

Table 3

The proposed speech enhancement system’s general

parameter setting

Parameter Variable and value

Window length Tw = 128 ms

Window shift Tsh = 32 ms

Number of FFT coefficients NFFT = 1024

Signal dimension N = NFFT
2 +1 = 513

Number of atom in the sub-dictionary L = 300

The stopping residual coherence

thresholds of LARC (the sparse coding µ = 0.14
block in the enhancement stage)

Table 4

The parameters setting of the 4 used dictionary learning

algorithms used in the training stage

Dictionary Parameter Variable name

IDDL

The stopping residual

µ = 0.15coherence thresholds of

LARC (sparse coding stage):

lines 3, 4 in Algorithm 1

Distortion error penalty λnc = 1, λsc = 1

Coherence penalty λc = 0.0001

max iter1 q1 = 7

max iter2 q2 = 5

FDDL

FISTA l1 regularization λ1 = 0.05

Fisher discrimination
λ2 = 0.01

regularization parameter

Maximum iterations q = 7

K-SVD

Sparsity degree
k = 30

(for OMP stage)

Maximum iterations q = 15

GDL

The stopping residual cohe-

rence thresholds of LARC µ = 0.15
(sparse coding solver)

Maximum iterations q = 20

The results shown in Tables 4 and 5 are for the case L = 300
(which means that the dimensions of the total dictionary

are 5137×600), with a pre-built K-SVD dictionary for ini-

tialization.

Experiments were conducted using Matlab 2015Ra on

a laptop with 3.16 GHz Intel Core i5 processor and 4 GB

RAM.

Table 3 summarizes the general parameters settings of

the speech enhancement system, while Table 4 summa-

rizes all dictionary learning parameters, for the 4 dictio-

nary learning algorithms used to get the results reported in

Tables 4 and 5.

Table 5 shows the frequency weighted segmental SNR

(in dB) for the different dictionary learning algorithms us-

ing the parameter settings listed above in Tables 3 and 4. To
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Table 5

Frequency weighted segmental SNR (in dB), speaker

independent scenario, with the percentage gain of IDDL

and FDDL gain over K-SVD and GDL

Noise dB K-SVD GDL FDDL IDDL
IDDL FDDL

gain [%] gain [%]

Babble

0 6.17 6.13 6.23 6.25 1.30 0.96

5 7.89 7.97 7.91 7.99 0.25 –0.75

10 9.76 9.92 9.70 9.93 0.10 –2.26

15 11.90 12.18 12.13 12.25 0.57 –0.41

Car

0 7.14 7.16 7.53 7.60 6.15 4.91

5 8.55 8.58 8.86 9.11 6.18 3.16

10 10.26 10.35 10.63 10.73 3.67 2.63

15 12.57 12.69 12.76 12.77 0.63 0.54

Restaurant

0 6.52 6.48 6.54 6.55 0.46 0.30

5 7.83 7.95 7.86 7.96 0.13 –1.14

10 9.66 9.75 9.49 9.77 0.21 –2.73

15 11.44 11.64 11.46 11.85 1.80 –1.57

Station

0 6.06 6.10 6.25 6.17 1.15 2.40

5 7.91 8.04 8.07 8.03 –0.12 0.37

10 9.88 10.02 9.96 10.03 0.10 –0.60

15 11.96 12.09 11.95 12.19 0.83 –1.17

Train

0 7.57 7.50 7.70 7.85 3.70 1.68

5 8.91 8.56 8.96 9.02 1.23 0.55

10 10.30 10.46 10.74 10.82 3.44 2.60

Airport

0 6.65 6.54 6.74 6.73 1.20 1.33

5 8.16 8.28 8.30 8.30 0.24 0.24

10 10.22 10.19 10.13 10.24 0.20 –0.88

15 12.25 12.31 12.29 12.42 0.89 –0.16

White

0 7.11 6.98 6.92 6.97 –1.97 –2.74

5 8.68 8.49 8.44 8.54 –1.61 –2.84

10 10.56 10.26 10.28 10.40 –1.52 –2.72

15 12.73 12.28 12.63 12.41 –2.51 –0.79

evaluate the degree of improvement that IDDL and FDDL

(which are discriminative dictionary learning algorithms)

offer over K-SVD and GDL (which are reconstructive DL),

we reported, in the same table, the percentage gain of

IDDL and FDDL over K-SVD and GDL (percentage of

outperformance), which is calculated as:

IDDLGAIN=

(

1−

∣

∣max
(

fwSegSNR(KSVD), fwSegSNR(GDL)
)∣

∣

fwSegSNR(IDDL)

)

·100%,

(23)

FDDLGAIN=

(

1−
∣

∣max
(

fwSegSNR(KSVD), fwSegSNR(GDL)
)∣

∣

fwSegSNR(FDDL)

)

·100%.

(24)

We can see that the proposed IDDL algorithm performs

better in terms of fwSegSNR in most cases (19 out of 27),

but not in the case of white noise, as it is not a structured

noise.

Table 6 shows PESQ for the different dictionary learn-

ing algorithms, with the IDDL and FDDL percentage gain

over K-SVD and GDL, which is calculated from Eqs. (23)

and (24), using PESQ instead of fwSegSNR. The results

show that IDDL performs better in 9 out of 27 of the cases,

Table 6

PESQ, speaker independent scenario, with the percentage

gain of IDDL and FDDL over K-SVD

and GDL

Noise dB K-SVD GDL FDDL IDDL
IDDL FDDL

gain [%] gain [%]

Babble

0 1.87 1.89 1.94 1.95 3.17 2.57

5 2.19 2.20 2.23 2.23 1.36 1.34

10 2.46 2.51 2.52 2.51 0.00 0.39

15 2.76 2.85 2.85 2.82 –1.05 0

Car

0 2.24 2.28 2.36 2.40 5.26 3.38

5 2.43 2.49 2.55 2.58 3.61 2.35

10 2.61 2.68 2.71 2.75 2.61 1.10

15 2.82 2.93 2.93 2.95 0.68 0

Restaurant

0 1.87 1.88 1.91 1.92 2.13 1.57

5 2.11 2.13 2.17 2.17 1.88 1.84

10 2.44 2.47 2.49 2.49 0.81 0.80

15 2.68 2.78 2.77 2.75 –1.08 0.35

Station

0 1.89 1.94 1.98 1.97 1.55 2.02

5 2.23 2.29 2.33 2.32 1.31 1.71

10 2.50 2.57 2.59 2.58 0.39 0.77

15 2.74 2.81 2.82 2.80 –0.36 0.35

Train

0 2.32 2.23 2.40 2.37 2.16 3.33

5 2.46 2.40 2.55 2.53 2.85 3.52

10 2.52 2.61 2.74 2.73 4.60 4.74

Airport

0 1.94 1.93 1.99 1.97 1.55 2.51

5 2.25 2.26 2.30 2.29 1.33 1.73

10 2.52 2.53 2.57 2.55 0.79 1.55

15 2.79 2.81 2.85 2.82 0.36 1.40

White

0 2.39 2.32 2.38 2.39 0.00 –0.42

5 2.63 2.54 2.61 2.63 0.00 –0.76

10 2.84 2.75 2.83 2.83 –0.35 –0.35

15 3.03 2.95 3.03 3.02 –0.33 0

while its performance is very close to that of E-FDDL in

the remaining cases.

Tables 5 and 6 show that K-SVD is the best DL for the case

of white noise, in terms of both performance measures, and

no gain is achieved by IDDL nor FDDL.

Fig. 3. PESQ over the different test sets.

50



Incoherent Discriminative Dictionary Learning for Speech Enhancement

Fig. 4. fwSegSNR over the different test sets.

Figures 3 and 4 show fwSegSNR and PESQ, respectively,

over all different test sets, in the case of car noise at 0 dB.

We can see that IDDL outperforms all other investigated

DL algorithms, over all test sets. We also noticed that the

worst performance (lowest fwSegSNR and lowest PESQ)

for all dictionaries is when the training set is all male,

while the testing set is all female (test set number 12),

while when the training set is all female and the testing

set is all male (test set number 11), performance does not

degrade, which might hint that the model learnt from fe-

male voices generalizes better than the model learnt from

male voices (which needs to be investigated further in the

future).

Table 7

DL training time in seconds

Number of atoms L KSVD GDL FDDL IDDL

300 15 44 52 20

600 41 58 175 57

Table 7 shows the different DL training times. We can see

that K-SVD is characterized by the shortest DL time, while

IDDL is ranked second. FDDL has the longest training

time, because at the sparse code updating stage it enforces

discrimination using Fisher discrimination criteria on the

sparse codes, which is a costly sparse coding algorithm.

Although Tables 5 and 6 show that IDDL offer perfor-

mance that is very close to that of E-FDDL in terms of

both performance measures, it has the advantage of lower

complexity, and thus a short training time.

Table 8

Sparse coding time

Number of atoms L Coding time [s]

300 0.008

600 0.03

Table 8 shows the different coding times for a single noisy

frame using LARC, for different dictionary sizes. As ex-

pected, we notice that increasing the dictionary size (in-

creasing the number of atoms L) increases the time needed

to calculate the sparse codes xi (which has a dimension

of 2L) of the amplitude spectrum of each noisy frame, at

the enhancement stage, and thus increases the time needed

to perform speech enhancement.

4.4. Convergence Analysis

We have studied empirically the convergence of the pro-

posed dictionary learning through examining how all the

IDDL sub-costs (speech distortion, noise distortion, speech

confusion, noise confusion, and sub-dictionaries’ coher-

ence) change with the respective iterations (variable t in

Algorithm 1, line 2). All reported figures relate to bab-

ble noise, with 0 dB. Figure 5 shows that speech and

noise distortion decreases with the number of iterations.

We can also see that speech distortion is smaller than

Fig. 5. Speech and noise distortion.

Fig. 6. Speech distortion for different dictionary sizes.
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Fig. 7. Noise distortion for different dictionary sizes.

Fig. 8. Speech confusion error for different dictionary sizes.

Fig. 9. Noise confusion error for different dictionary sizes.

noise distortion. This is because speech is more structured

than noise.

Figures 6 and 7 show speech distortion and noise distortion

for different number of atoms, respectively, and we can see

that increasing the number of atoms decreases the distortion

error, as the dictionary becomes richer, and thus has higher

representation capability.

Figures 8 and 9 show the speech confusion error and noise

confusion error. We can see that both speech and noise

confusion errors achieve a considerable decrease with iter-

ation number 3.

Fig. 10. Coherence between speech and noise sub-dictionaries.

Figure 10 shows the coherence between the noise and

speech sub-dictionaries. We can see that increasing the

number of atoms increases the coherence, as the minimum

coherence increases with increasing the number of columns

in any matrix.

5. Conclusion

In this paper we proposed a new algorithm to learn an in-

coherent discriminative dictionary called IDDL, used for

the specific task of speech enhancement. The goal of the

cost function is to minimize both “source distortion” and

“source confusion” errors, in addition to reducing coher-

ence between noise and speech sub-dictionaries. Perfor-

mance of the proposed algorithm was evaluated using two

objective measures: frequency weighted SNR: fwSegSNR

and PESQ, to compare with well-known dictionary learn-

ing algorithms: K-SVD, GDL and FDDL. Experiments on

the Noizeus dataset show that IDDL offers better perfor-

mance in comparison to other studied DL in terms of both

measures, in most of the cases, but not in the case of white

noise. Performance of IDDL is close to that of E- FDDL in

terms of both performance measures, but it has the advan-

tage of having a notably shorter training time. The superior

performance of IDDL makes it suitable for speech enhance-

ment in the case of structured non-stationary noise, such as

babble and car noise.
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