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Abstract—The paper presents application of the Markov

chain model to assess the risk affecting critical national in-

frastructure. A method for relating different service states

to transition probabilities is shown. Then, a real-life exam-

ple is thoroughly analyzed. Finally, results of a numerical test

concerning this problem are provided.
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1. Introduction

As stated in Directive (EU) 2016/1148 of the European

Parliament and of the Council of the European Union [1],

magnitude, frequency and impact of security incidents are

increasing, and represent a major threat to the functioning

of networks and information systems. Those systems may

also become a target of deliberate harmful actions intended

to damage or interrupt their operation. Such incidents may

impede the pursuit of economic activities, generate substan-

tial financial losses, undermine user confidence and cause

major damage to the economy. The security of network

and information systems is explained in [1] as the ability

of network and information systems to resist, at a given

level of confidence, any action that compromises the avail-

ability, authenticity, integrity or confidentiality of stored,

transmitted or processed data, as well as of the related ser-

vices offered by or accessible via such network and infor-

mation systems. Any reasonably identifiable circumstances

or events exerting a potential adverse effect on the security

of network and information systems are defined as risk.

The European IEC/ISO 31010 Standard [2], being the

main document concerning risk assessment and risk man-

agement (i.e., the measures to identify the risk of specific

incidents, as well as to prevent, detect and handle such

incidents and to mitigate their impact), lists as many as

31 risk assessment techniques including, inter alia: Delphi

method, hazard analysis and critical control points, sce-

nario analysis, fault tree analysis, event tree analysis, reli-

ability centered maintenance, Markov analysis, Bayes nets.

A review of various risk analysis methods used in network

applications may be found in [3].

Markov analysis seems to be one of the most promising

approaches adopted in the domain of network and informa-

tion systems – it is used when the probability distribution

of a future state of a system depends upon the distribution

of its present state [4]. In this work we take into account

the most important criterion – availability – understood as

the ability of an ICT service to perform its agreed function

when it is required. Availability is defined by reliability,

reparability, ability to provide the service, efficiency and

security.

2. Application of the Markov Chain

Model in the Cybersecurity

The basic idea behind the concept of a detection and pre-

vention system is to attempt to provide information about

potential events that have not yet taken place, depending

on the current and historical knowledge about the same or

similar events that occurred in the past. The more actual

data are available, the more accurate predictions should be

generated, and the evaluation of the consequences of future

incidents will be more realistic.

In the case of multistage processes with a finite num-

ber of possible states, the Markov chain model is an at-

tractive option. In particular, this model is more general

than the Bayesian network model which refers to directed

(rather small) and acyclic graphs (DAG), because it allows

feedback.

When building a dynamic discrete Markov process model,

we introduce a finite set of states Si, i ∈ I in which the sys-

tem may be at a given stage (time interval) [4]. Next, we

estimate the probabilities of transitions between states in

the successive stages, corresponding to successive time in-

tervals. The probabilities pi j(k) = P(S j(k +1)|Si(k),m(k))
of transition from state Si in stage (time instant) k to the

state S j in stage k + 1 may depend on the external values

m(k) concerning, for example, emerging threats, such as

possible failures of supporting services or actions enhanc-

ing security of the system. If at instant k one can determine

the current state of the system, then for a given number of

consecutive moments, one may perform a simulation anal-

ysis of the future behavior of the system.

15



Andrzej Karbowski, Krzysztof Malinowski, Sebastian Szwaczyk, and Przemysław Jaskóła

Being able to modify the values of transition probabilities,

we can influence the evolution of events. In the case of

fixed pi j values, we can determine the probability of the

system reaching certain states in the long term, by solving

a system of ¯̄I linear equations.

An interesting method of assessing the risk affecting

a system model, having the form of a Markov chain, was

proposed by Afful-Dada and Allen [5]. They introduced

a cost function for various decisions related to defense

against threats. Using transition matrices, they count not

only the expected value of the cost (in their case it is a for-

mulation with an infinite time horizon and a discount), but

also its variance, and then they illustrate both on a box-and-

whisker plot.

In article [6], an innovative probabilistic approach is

proposed, called advanced probabilistic approach for net-

work-based intrusion detection systems (APAN). It does

not only detect the presence of an attack. It also provides

an assessment of the degree of its risk, using a probability

scale.

The paper by Ye et al. [7] presents a technique to detect

cyberattacks by detecting anomalies, and discusses robust-

ness of the modeling technique applied. In this technique,

the Markov chain model represents the profile of net-

work event transitions under the system’s normal operating

conditions (the so-called normal profile). The lower the

probability that the observed effects are consistent with the

Markov chain model for the normal profile, the more likely

it is that the observed effects are anomalies resulting from

cyberattacks and vice versa.

Here, we use the Markov chain model for states defined in

a way that is similar to those used in the works mentioned

above, and assess the risk of unfavorable events through

calculation of an indicator concerning availability, which is

a function of the current state of the system. The situation

is assessed, as in [8], from the point of view of a nationwide

Operations Center (OC).

3. Threat Imaging Model

Let us introduce a description of a dynamic model in the

form of a Markov chain operating a set of discrete states

characterizing the behavior of a given service. The tran-

sition from one state to another may take place under the

influence of events observed in the local digital space, as

well as in connection with events regarding the information

systems of other services.

The basic state of the service r model is the state Sr
0

in which we deal with the normal situation. We assume

that r = 1, . . . ,R. In this state, of course, there are threats,

including those related to IT space (both to the local

part of this space and to IT systems of other platform par-

ticipants).

As a result of the materialization (in different scales) of

these threats, the state of service r may change. Then,

transition to a state Sr
i occurs, which indicates an appro-

priately increased state of emergency. Let us assume that

level i may take values from 0 (normal situation) to nr (state

of the highest threat in the field of cybersecurity). The sub-

sequent states may be, in particular, related to the breach

of availability of the relevant elements of IT systems. The

number of states may be different for the models of indi-

vidual services, allowing to increase the flexibility of the

proposed description.

Let us also assume that state Sr
nr+1 corresponds to the ex-

treme (critical) situation in which the provision of a given

service is no longer possible, at least at the lowest satis-

factory level. This state, from the point of view of the

cybersecurity analysis, may be considered as terminal. Af-

ter it has been achieved, further activities related to a given

service must take place on a different plane.

The transition from state Sr(k) = Sr
i at a given moment

(stage) k, to Sr(k + 1) = Sr
j at moment k + 1, where j > i

or j < i, takes place with a given probability pr
i j(k), which

may be dependent on the state of other services at time k,

i.e., on:

S−r(k) = (S1(k), . . . ,Sr−1(k), Sr+1(k), . . . ,SR(k)) , (1)

as well as on some external variables concerning, for in-

stance, potential failures of supporting services or actions

enhancing system security at OC level that we may mark

as m(k). Thus

pr
i j(k) = pr

i j(S
−r(k), m(k)). (2)

In fact, in the case of service r, only a subset of the entire

set of states of other services S−r(k) should be considered,

limited to those services on which service r depends.

We will further consider vector S−r(k) in this sense. In

turn, service r may exert an impact on other services. The

period of time between consecutive transition moments k
and k +1 is assumed to be fixed.

In the simplest case, it may be assumed that the sets of

all possible states for all services have the same number of

elements, that is:

n1 = n2 = . . . = nR = n (3)

and
¯̄I 1 = ¯̄I 2 = . . . ,= ¯̄IR = n+2 , (4)

where Ir is the set of all possible states of the service

r = 1, . . . ,R. Then, the Markov chain equation for stage

probability distributions may be written in the matrix form:

π(k +1)T = π(k)T P(k) , (5)

where π(k) is the vector of probabilities of all possible

state level combinations of dimension (n + 2)R and P(k)
are (n + 2)R × (n + 2)R matrices build of pr

i j(k) given by

Eq. (2).

Such a description allows us to illustrate well the general

situation, assuming that at a given stage the OC knows

the states of models of particular system services. It is
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possible to assign to these services various criticalities

corresponding to the assessment of the relative importance

of a given service from the point of view of the functioning

of the entire state organism.

The basic difficulty associated with the presented approach

lies, of course, in determining the subsequent time stages k,

including the intervals between the successive moments,

and in estimating the probability values pr
i j(S

−r(k),m(k)).
One may consider obtaining such estimates as unrealistic

and, therefore, reject the proposed approach. However, the

question arises what it should be replaced with, while main-

taining the ability to perform a dynamic assessment of the

situation and to generate sensible recommendations. In par-

ticular, there is no other way to enable the OC to conduct

simulation analyses related to the future behavior of the

entire IT infrastructure.

It must be admitted that the estimation of the required prob-

abilities will be, to some extent, of subjective and coarse

nature, especially during the initial period of the opera-

tion. The introduction of different variants of these esti-

mates, corresponding to more or less cautious assessments,

is also possible. Of course, the information needed for this

purpose must be provided by the operators of individual

services. In particular, knowing actions m(k + l) for sub-

sequent stages, e.g., l = 1, . . . ,L, proposed by the OC, the

operator of a given service r should be able to present the

operator’s estimate of value pr
i j(S

−r(k+ l),m(k+ l)) at time

k+ l, taking into account the impact of the current state of

other services, or rather the IT systems of these services,

on possible changes in the status of its part of the model

used at the OC level. In particular, the terminal state of a

relevant auxiliary service will have a very significant im-

pact on the probabilities of adverse changes in the service

status.

At this point, it is worth noting that current state Sr(k) of

service r, transferred to the OC level, will in fact be an

appropriate aggregate of a much more detailed depiction

of the status of a given service considered at the level of its

operator. This means that the operator must play a leading

role in determining the structure and parameters of the ser-

vice model used by the OC. In this approach, descriptions

of individual services may be modified as and when a need

arises.

4. A Real Life Example

Let us suppose that we are considering a system in which

a service corresponding to r = 1 means the provision of

health care services by, say, a specific hospital. Service

r = 2 is related to the supply of electricity to the network

to which the hospital is connected. Of course, the hospital

may use, in the case of a failure resulting in the lack of

energy supply, its own electricity generator. However, let

us assume that the generator’s capabilities are limited and,

at least in the long term, it may happen that the hospital will

suspend the provision of all or at least a significant portion

of medical services in the absence of energy supplied from

the external network.

Thus, we consider a system composed of two entities, i.e.,

r = 1,2. Let us distinguish, in the case of each service,

outside of the normal state (labeled with “0”), only one state

of heightened IT risk (labeled with “1”), related to, say,

an identified violation of susceptibility from a particular

set, i.e., n1 = n2 = 1, and, of course, the state of inability

to provide this service (labeled with “2”). Let us assume

that the threat (including of IT-related nature) of service 1

depends on the current state of service 2, while service 2

does not depend on the condition of service 1.

Let us suppose that one may estimate, based on the anal-

ysis carried out at the level of operators, in the system’s

normal state, described by pair (S1
0,S

2
0), the probabili-

ties of an increased risk of relevant IT infrastructures,

i.e., respectively, p1
01(S

2
0) = 0.01 and p2

01(S
1
0) = p2

01(S
1
1) =

p2
01(S

1
2) = p2

01 = 0.005 (we assume that S1 has no influ-

ence on S2). Let at the same time p1
02(S

2
0) = 0.001 and

p2
02(S

1
0) = p2

02(S
1
1) = p2

02(S
1
2) = p2

02 = 0.001 – we assume

that in the normal state, the probability of withholding the

services in question is very small. The values of proba-

bilities refer to, say, the time interval between moments k
and k + 1 equaling one day. In the case of changing the

time scale considered in our model, these values have to be

changed accordingly.

Then, in the situation when S1(k) = S1
0 but S2(k) = S2

1, i.e.,

an increased risk has taken place in the service model as-

sociated with the delivery of energy, we evaluate p1
01(S

2
1)

equal to 0.1. In this case an increased risk of informa-

tion services 2 associated with the observed digital attack

and the violation of the corresponding susceptibility of the

operator of the service increases the potential threat to ser-

vice 1. At the same time we can estimate p1
02(S

2
1) as equal

to 0.05 – we seriously expect that the observed increased

risk of service 2 (S2(k) = S2
1) makes it possible to suspend

the provision of service 1.

Further, when S1(k) = S1
0 but S2(k) = S2

2, i.e., service 2 is

not provided, we assess p1
01(S

2
2) as also equal to 0.1, but,

at the same time p1
02(S

2
2) = 0.4 – the probability of inter-

rupting the operation of the hospital is high. This means

that the lack of service 2 does not influence, in itself, the

state of IT security of service 1, but substantially decreases

the ability to maintain service 1. If we are able to de-

termine, in a similar manner, the value of the probabil-

ity p2
12, e.g., p2

12 = 0.2, and of other necessary probabili-

ties, including the return to normal states p1
10(S

2
0), p1

10(S
2
1),

p1
10(S

2
2), p1

20(S
2
0), p1

20(S
2
1), p1

20(S
2
2) and finally p2

10 and p2
20,

we can, starting from any state at time k, conduct further

simulation analysis of the system behavior. We can also

calculate stationary probabilities which allow to assess the

long-term behavior of the entire system if external and in-

ternal conditions remain unchanged.

This example clearly shows how many values of relevant

probabilities need to be estimated in order to be able to

dynamically analyze the development and propagation of

threats. It seems that little can be done about it. It is nec-
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essary to count on the fact that the development of threats

within a given service will actually depend on the condition

of a few other services. This should, to a large extent, alle-

viate the difficulty of estimating a large number of probabil-

ities. The example also shows that dynamic threat analysis

limited to the analysis regarding the nearest time perspec-

tive in the currently observed condition of services only,

requires knowledge of the values of probabilities related to

this state. If, suppose, our exemplary system is currently in

state S1(k) = S1
0,S

2(k) = S2
1, then, for such an analysis, we

need to know the values of p2
10, p2

12 and, as specified above,

p1
01(S

2
1) and p1

02(S
2
1). In particular, knowing the approxi-

mate values of these probabilities, we can, being also aware

of the short-term effects of individual states expressed in

the appropriate scale, determine the expected value of these

effects, i.e., the degree of a given risk.

5. Implementation and a Numerical Test

In order to test the behavior of the Markov model presented

above, it was implemented using Java language and Java FX

framework. It is concerned with the availability aspect of

two services considered in Section 4, but, for simplicity,

we assumed that they both have two states only: normal

(labelled with “0”) and failure (labelled with “1”). In other

words, we assumed that there are no higher threat states

(n1 = n2 = 0). The two services from Section 4 are En-

ergy supply provided by Power plant in Energy sector and

Health care provided by Hospital in Health sector. The re-

lationship between them is depicted, in the form of a graph,

in Fig. 1.

Fig. 1. Graph depicting the services.

When configuring the model, the user enters the number

of iterations (stages), the transition matrix P and the vector

of initial input probabilities π(0). If we assume that each

service can have two states, this matrix will be of size 4×4
(Fig. 2). Accordingly, the vector of input probabilities

has 4 elements (Fig. 3).

Fig. 2. Transition matrix.

Fig. 3. Probabilities and risk index vector.

There is also a certain cost, here named “risk index”, of

being in state S. It will be denoted hereafter by g(S). The

total level of risk R at time k can be interpreted as the

expected value of this cost:

R(k,S(0)) = R
(

k, [S1(0),S2(0)]
)

= E
S(k)

g(S(k)) . (6)

The vector of probabilities π and the value of R were

calculated for subsequent iterations k = 1, 2, . . .. They are

presented in Fig. 4 and Fig. 5, respectively. For example,

for k = 10, πT = [0.4252 0.0104 0.2983 0.2661] and

R = 33.29.

Fig. 4. Time series of probabilities of different states of the

Markov chain.
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It is clearly visible, that the probability of the system staying

in the initial “sane” state decreases with time. Also, the

probability of the service S1 being available despite the

service S2 being shut down remains very low, regardless of

time (line labeled (S1
0,S

2
1) in Fig. 4).

Fig. 5. Time series of the total risk level R.

The written shell is general and has a convenient graphic

interface. It is easily configurable and can be used to model

much more complicated systems.

6. Perspectives

The model was created as part of the National Cybersecu-

rity Platform (NCP) project. In addition to offering other

functionalities, the platform is responsible for simulation

and modeling of interactions between critical services, es-

pecially through ITC infrastructure, in a way similar to the

SACIN framework described in [8].

The data necessary for creating the model of interconnec-

tions are collected through a survey. The provision of a full

probability matrix is unlikely with this method. A mech-

anism mapping the strength of connections between the

services declared in the questionnaires and the Markov

model must be created. Moreover, the influence of one ser-

vice on the other is expressed with three dimensions taken

into consideration: confidentiality, integrity and availabil-

ity, following the general pattern described, for instance,

in [9], while the model presented above deals with avail-

ability only.

7. Conclusions

Application of Markov chains is one of the most promising

approaches to modeling the propagation of risky events in

the area of cybersecurity. In this model, states represent

the possible levels of security of different services assessed

from the point of view of their availability.

This model has been implemented and preliminarily tested

on an example concerning two services: healthcare and

power supply. It must be significantly expanded to address

the full range of NCP-related needs.
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