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Abstract  Efficient network communications with optimal net-
work path selection play a key role in the modern world. Conven-
tional path selection algorithms often face numerous challenges
resulting from their limited scope of application. This research
proposes a modified swarm intelligence approach, known as
cat swarm optimization (CSO) with Lévy flight that is used for
network link load balancing and routing optimization. CSO’s
quick convergence capabilities are suitable for rapid response
applications; however, the approach is prone to getting stuck in
local optima. Lévy flight enhances search efficiency, thus aid-
ing in escaping local optima. CSO with Lévy flight (CSO-LF)
outperforms original CSO and PSO algorithms in terms of so-
lution quality and robustness across various benchmarks. The
proposed method has been evaluated in software defined net-
works (SDN) with nine benchmark functions assessed. CSO-LF
achieved the best scores in both the best and worst positions.
When used in SDN for link load balancing, CSO-LF demonstrat-
ed lower latency and higher throughput than CSO, and lower
latency and higher throughput than PSO in a fat tree topology.
Keywords  cat swarm optimization, Lévy flight, load balancing,
software-defined networks

1. Introduction

Optimization plays a critical role across numerous scientif-
ic areas, as it allows to improve various algorithms of the
conventional, evolutionary and nature-inspired metaheuris-
tic variety, thus striving to solve more complex challenges.
In recent years, nature-inspired algorithms have gained pop-
ularity, especially when it comes to addressing non-linear
optimization tasks [1].
Software-defined networks (SDNs) allow to address some
of the inherent challenges of modern network management
by separating the control and data planes. This separation
allows for a centralized view of the network, which facilitates
a more effective implementation [2], [3]. Although SDNs
alleviate some limitations in scalability and management
of traditional network structures, they also introduce new
challenges, especially in achieving balanced network loads.
Many existing methods face difficulties in reaching a global
optimum and handling non-linear dynamics (Fig. 1).
To address these issues, metaheuristic techniques, particularly
those inspired by natural phenomena, such as swarm intel-
ligence, have emerged as a promising solution. Moreover,

Flow table update

Control plane

Data plane

Controller

Network
state feefback

OpenFlow swich

O
pe

nF
lo

w
 p

ro
to

co
l

Flow 1 decision

Flow N decision

Flow table 1

Flow table N

Fig. 1. Architecture of an SDN-based system.

techniques such as anomalous diffusion and Lévy flights of-
fer the potential for improved optimization by enabling larger
movements through solution spaces [1].
Bearing in mind the context defined above, this research
is devoted to advancing SDN technology by utilizing cat
swarm optimization with Lévy flight (CSOLF) methods.
The primary objective is to improve load balancing and path
optimization within SDNs. This method seeks to address the
complexities of modern computer networks, promoting better
scalability, efficient resource management, and improved
network performance.
The contributions of this work are listed below.
• improvement of the global search capability of the original

CSO algorithm by applying Lévy flight,
• implementation of the proposed algorithm in the SDN

controller for link load balancing,
• comparison of throughput- and latency-related metrics of

the proposed method with the original parameters of cat
swarm optimization (CSO) and particle swarm optimiza-
tion (PSO) algorithms.

PSO, inspired by the behavior of bird or fish swarms [4],
was initially introduced as a metaheuristic algorithm for the
optimization of functions. Since then, it has been applied to
various optimization problems, including dynamic systems
[5], pattern matching [6], traveling salesman problem [7],
scheduling, and vehicle routing [8]. The CSO algorithm
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based on cat behavior [9] operates in two modes, seeking and
tracing, for exploration and exploitation, respectively. CSO
has found applications in function optimization [10], task
allocation [11], and workflow scheduling [12].
The remaining parts of this paper are structured as follows.
Section 2 discusses related works. Section 3 presents the
concepts of Lévy flight and CSO. Section 4 provides a com-
prehensive explanation and describes the implementation of
the proposed algorithm. Section 5 presents the experimental
analysis performed in various scenarios. Finally, concluding
remarks are presented in Section 6.

2. Related Works

Swarm intelligence and other algorithms are often used in
optimization and computational techniques, especially in
software-defined networks (SDN) [13]. Leveraging these
algorithms, SDN offers an optimal framework for scalable and
programmable networks. In complex network management,
these algorithms address an extensive solution space and
multiple targets. Integrating heuristics with SDN improves
load balancing [14]. However, studies in the literature have
demonstrated that integrating Lévy flight with metaheuristic
algorithms significantly enhances their efficiency, both in
SDN and in other applications.
Kolodziejczyk et. al. [15] proposed particle swarm optimiza-
tion (PSO) methods based on the characteristics of the Lévy
distribution. This involves employing the Lévy distribution to
start the swarm and using the Lévy flight as a scalar inertia co-
efficient. Bousmaha et al. [16] introduced a training technique
that combines PSO with multiverse optimization using Lévy
flight. This approach helps prevent premature convergence
and achieves a better balance between exploration and ex-
ploitation. To address poor performance of quantum-behaved
PSO (QPSO) in high-dimensional problems, paper [17] in-
corporated Lévy flight and straight flight (SF) strategies into
QPSO. This method showed strong performance in solving
engineering design optimization challenges.
Ant colony optimization (ACO) was improved in [18], based
on the Lévy distribution applied to the candidate selection
process, and took advantage of the Lévy flight, which in-
creased searching speed and also ensured a better exploration
of search space. In article [19], a greedy Lévy ACO was pro-
posed, combining epsilon greedy and Lévy flight strategies
to tackle complex combinatorial optimization problems. This
method is developed in max-min ACO and is applied to solve
the traveling salesman problem. Paper [20] introduced a hy-
brid max-min ant system (HMMAS) that incorporates the
Lévy flight strategy to address the limitations of the tradi-
tional approach. HMMAS improves diversity by dynamically
adjusting its parameters.
Verma et. al. [21] proposed modified chicken swarm op-
timization (MCSO) that addresses local optima and early
convergence issues in basic CSO by incorporating Lévy flight
as a random feature. This enables MCSO to navigate cases
where conventional methods may fail to find neighboring solu-

tions. Through experiments on various benchmark functions
and pressure vessel design problems, MCSO demonstrat-
ed efficient performance, with faster convergence to global
optima. Statistical analysis and comparisons with other op-
timization methods confirmed the effectiveness of MCSO
in various problem domains. Article [22] introduced an im-
proved artificial bee colony (ABC) algorithm incorporating
Lévy flight (LABC) to improve the exploitation capability
of the ABC algorithm for estimations performed in the 3-p
distribution. Compared to other metaheuristic algorithms,
the results demonstrated that LABC provided more precise
maximum likelihood (ML) estimations. The authors of [23]
developed a gray wolf optimization algorithm with dynamic
adjustment of the inertia weight and a Lévy flight strategy. In
the early stages of iteration, Lévy increase the probability of
enhancing global search capabilities and boosts population
diversity.
To recapitulate, the integration of Lévy into various meta-
heuristic algorithms has resulted in improvements in solving
complex optimization problems. These techniques improved
the balance between exploration and exploitation, improved
convergence rates, and provided robust solutions to a wide
class of computational challenges. However, there are still
several optimization algorithms that have not yet been in-
tegrated with Lévy flight. Table 1 summarizes the findings
obtained from the literature.

3. CSO and Lévy Flight
3.1. Original CSO Algorithm

CSO is a metaheuristic algorithm that mimics the behavior of
cats [9]. It alternates between the seeking and tracing phases,
representing local and global search for optimal solution.
The cat that records the best solution will be kept in memory
once the cats have been divided into these two phases, from
which new positions and fitness functions will be evaluated.
These processes are repeated, until the termination criteria
are met [24].
In the search phase, the cat rests or observes and searches
for the best solution by slightly adjusting its position and
evaluating the results to avoid rapid changes, ensuring a more
thorough exploration of the solution space [25].
The position of each cat is adjusted using the following
equation:

Xcn = (1± SRD×R)×Xc , (1)
whereXc denotes the existing position of the cat,Xcn denotes
the updated position of the cat, SRD denotes the search range
of the selected dimension, and R denotes a random number
within the range 0, . . . , 1. The Xcn parameter determines the
direction of the cat’s movement.
The fitness solution (FS) measure assesses the effectiveness of
each candidate solution or cat in addressing the optimization
problem. The FS function assigns a value that reflects how
close a solution is to the optimal result, guiding the algorithm’s
exploration (seeking phase) and exploitation (tracing phase)
behaviors. Higher fitness values lead cats to promising regions
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Tab. 1. Summary of the literature review.

No. Topic Metrics Solution Limitation

[15] PSO and Lévy flight integration
Average

performance,
standard deviation

Modified particle swarm
optimization Overhead

[16]

Automatic selection of hidden
neurons and weights in neural
networks for data classification
using hybrid PSO multi-verse

optimization based on Lévy flight

Standard momentum
back propagation

and adaptive
learning rate

PSO with multi-verse
optimization using Lévy

flight
Scability issues

[17]
Quantum PSO with optimal

guided Lévy and straight flight for
solving optimization problems

Friedman rank test PSO with straight flight and
Lévy flight

High computational
cost

[18] An ant colony optimization (ACO)
with Lévy flight Throughput Elman neural network for

network optimization Slow convergence

[19]
Improving ant colony optimization
algorithm with epsilon greedy and

Lévy flight

Travelling salesman
and related problems

Ant colony optimization
algorithm with epsilon
greedy and Lévy flight

Complex

[20]
A hybrid max-min ant system by
Lévy flight and opposition-based

learning

Travelling salesman
and related problems

Ant colony optimization
with Lévy flight and

opposition-based learning

Potential convergence
instability

[21] Lévy’s flight guided modified
chicken swarm optimization

Win-tie-loss,
Bonferroni-Dunn

post-hoc, and
Wilcoxon tests

Modified chicken swarm
optimization to solve early
convergence problem of

chicken swarm optimization

Single objective
problem scenario

[22]
Artificial bee colony with Lévy

flights for parameter estimation of
3-p Weibull distribution

Machine learning
estimation tests

Artificial bee colony with
Lévy flights

Limited scalability
on high dimensional

problems

[23]

Grey wolf optimization algorithm
based on dynamically adjusting
inertial weight and Lévy flight

strategy

Standard test
functions

Grey wolf optimization with
Lévy flight

Difficulty in
balancing inertia

weight adjustments

of the solution space, allowing the algorithm to iteratively
converge on the best possible outcome [25].
In the second tracing phase, the cat is hunting its prey in the
tracing phase. The position and velocity of the prey are used
by the cat to calculate its movement speed and direction after
finding the prey while resting in the search phase [25]. The
equation for velocity of CSO’s cat k in dimension d is:

vk,d = vk,d + r1 × c1(Xbest,d −Xk,d) , (2)

where vk,d denotes the velocity of the cat k,Xbest,d denotes
the best position of the cat,Xk,d denotes the position of the
k-th cat, c1 is a constant and r1 denotes a random number
between 0 and 1.
With this velocity, the cat traverses theM -dimensional deci-
sion space and reports each new position. The new position
is determined by the following formula:

Xk,d,new = Xk,d,old + vk,d , (3)

whereXk,d,new represents the new position of the k-th cat,
and Xk,d,old represents the present position of the k-th cat.

Completion of the algorithm is determined based on the
achievement of termination conditions [26] which include
the number of iterations, progress, and time.

3.2. Lévy Flight

Lévy flight is a class of non-Gaussian random walks whose
step length is drawn from the Lévy distribution, often in terms
of a simple power law equation [27]. The simple power law
equation is given as:

L ∼ |s|−µ, 0 < µ ¬ 2 , (4)

where L is the length of the step, s is the step and µ is the
Lévy exponent, controlling the scale of the steps.
In practice, a Lévy flight step can be modeled as:

L =
rand()

| rand() |
1
µ

,

where rand() generates normally distributed random numbers
and µ controls the step size.
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Tab. 2. Group of test functions used in numerical evaluations [29].

Function Expression Dim Search range

Ackley
f1 = −20 exp

(
−0.2

√
1
d

d∑
i=1
x2i

)
−

exp
(
1
d

d∑
i=1
cos(2πxi)

)
+ 20 + exp(1)

2 −5 ¬ x ¬ 5

Drop wave f2 = −
1+cos(12

√
x21+x

2
2)

0.5(x21+x
2
2)+2

2 −5.12 ¬ x ¬ 5.12

Bukin f3 = 100
√
|x2 − 0.01x21|+ 0.01|x1 + 10| 2 −15 ¬ x1 ¬ −5,

−3 ¬ x2 ¬ 3

Three hump camel f4 = 2x21 − 1.05x41 +
x61
6 + x1x2 + x

2
2 2 −5 ¬ x ¬ 5

Matyas f5 = 0.26(x21 + x
2
2)− 0.48x1x2 2 −10 ¬ x ¬ 10

Bohachevsky f6 = x21 + 2x
2
2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7 5 −100 ¬ x ¬ 100

Sphere f7 =
d∑
i=1
x2i 2 −5.12 ¬ x ¬ 5.12

Sum squares f8 =
d∑
i=1
ix2i 2 −10 ¬ x ¬ 10

Sum of different powers f9 =
d∑
i=1
|xi|i+1 2 −1 ¬ x ¬ 1

This equation models the mixture of small, local searches
(short steps) and long-range exploration (large jumps) charac-
teristic of Lévy flight, making it useful for global optimization
in metaheuristics. Lévy flights are more efficient than Brow-
nian random walks when it comes to exploring large-scale
search spaces. There are many reasons to explain this effi-
ciency, one of which stems from the fact that the variance of
Lévy flights increases much faster than the linear relationship
of Brownian random walks [28].

4. Proposed Method

Despite the many CSO variants available in the literature, the
problems of premature convergence and generating inefficient
results continue to persist. The Lévy flight method is used
to solve these problems and enables CSO to generate more
efficient results. This method ensures that the CSO, which is
unable to perform the global search well, will enjoy better
search efficiency and will not be trapped in local minima. In
the CSO-LF method, the Gaussian random walks used in the
tracing mode are replaced with Lévy flight.

4.1. CSO-LF Algorithm

The CSO-LF follows a process similar to the original CSO in
the seeking phase. However, the movement that occurs in the
tracing phase is where the novelty of the algorithm is shown.
In the tracing phase, the new position of the cat is calculated
by:

Xk,d,new =
[
α · L(β)

]
Xk,d,old + vk,d , (5)

where α is the scaling parameter that determines the step size
in the Lévy flight and L(β) denotes a random number vector
obtained using Lévy distribution with the β exponent.
In Eq. (5), the movement taking place in the tracing phase,
which is originally powered by the Brownian random walk, is
replaced with the Lévy flight. In the Lévy flight, the step size
follows a probability distribution, which allows for occasional
long jumps [27]. The scaling parameter affects the frequency
with which longer jumps occur, and thus, it is a very important
parameter in ensuring the overall performance of the algo-
rithm. In this paper, the scaling parameter has been fine-tuned
to ensure optimal search efficiency.
The algorithm is terminated based on achieving the termina-
tion conditions. In this study, is defined by a predetermined
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number of iterations. The algorithm continues until the last it-
eration has been completed. The pseudocode of the proposed
solution is given as Algorithm 1.

4.2. Test Functions

A selection of unimodal and multimodal test functions [29]
was used to perform a numerical evaluation for the suggested
approach (as shown in Tab. 2). The functions were chosen
for their diverse shapes and scaling ability. f1, f2 and f3
are functions with many local minima, f4 is a valley-shaped
function, f5 is a plate-shaped function and f6, f7, f8 and f9
are bowl-shaped functions.
The initial population was generated from a uniform distri-
bution across the search space, proportional to its specified
boundaries. Table 2 provides the range limits for all functions.
The maximum iteration count was set to 100 for a population
size of 50.
The numerical evaluations were carried out in five trials,
with each trial producing a set of optimization results. For
each function, three key metrics were recorded: the best, the
worst and the average best solutions in the five trials. Here,
the “worst” outcome represents the highest (least optimal)
function value obtained in any of the five tests, indicating
the algorithm’s most unfavorable performance. This metric
provides information on variability and resilience under less
favorable conditions. These metrics were then ranked using

Algorithm 1 Pseudo-code for cat swarm optimization with
Lévy flight (CSO-LF)

1: Initialize parameters
2: α = scaling parameter (step size in Lévy flight)
3: β = Lévy distribution exponent
4: Number of cats (agents), iterations, dimensions
5: Initialize positionsX[k][d] and velocities v[k][d] for each

cat
6: while stopping condition is not met do
7: for each cat k do
8: if in the seek phase then
9: Perform the seek phase

(according to the standard CSO)
10: else in the tracing phase
11: for each dimension d of the cat k do
12: Generate a random vector L(β)
13: Compute a new position:
14: X[k][d]new =

(
α · L(β)

)
·

X[k][d]old + v[k][d]
15: end for
16: Update the cat position X[k] with X[k]new
17: end if
18: end for
19: Update velocities v[k][d] based on the new position
20: Evaluate the fitness of each cat’s new position
21: Identify and update the best position found so far
22: end while
23: Output the best position found and its fitness value

Tab. 3. Notations used.

Notation Description

G Topology of the given network
V Set of all switches

E
Set of all links that connect the switches

together

φs,d
Set of all feasible paths for switch pair

vs and vd
I Initial population
F (k) Fitness function of the k-th cat

Putilizationk
Time it takes for a packet to be transmitted

on the k-th path
Pcongestionk Available bandwidth on the k-th path

a standard competition ranking system, where lower scores
in the specific categories indicate more effective algorithms.

4.3. Network Modelling

The proposed CSO-LF is modeled as a load balancing prob-
lem that was equated to find the path with the least cost in the
SDN environment whose parameters are shown in Tab. 3.
From the data plane perspective, the topology of the network
can be modeled by:

G = (V,E) , (6)

where V is a set of switches, given by V = v1, . . . , vn with
n = |N | and E is a set of links that connect the switches to
each other, given by E = e1, . . . , em withm = |E|.
The algorithm seeks to minimize path utilization Putilization
and path congestion Pcongestion of a given topology. Based
on the condition above, the objective function is designed,
namely:

Fitness function = min(Putilization × Pcongestion) , (7)

In CSO-LF, the SDN controller first generates, randomly, the
initial population, i.e. a set of cats. The position of each cat,
which is a possible and available path, consists of a set of
switches that can connect the sender side and the receiver
side. This is defined by the following:

C =
{
ck | ck ∈ φ(s,d), (s, d) ∈ V

}
, ∀k, k = 1, . . . ,K, (8)

where φ(s,d) is a set of all feasible paths for each pair vs and
vd.

Tab. 4. Network topologies used in evaluation.

Mesh topology Fat tree topology

10 switches, 10 hosts 20 switches, 16 hosts

20 switches, 20 hosts 45 switches, 54 hosts

30 switches, 30 hosts 80 switches, 124 hosts

40 switches, 40 hosts 125 switches, 250 hosts

50 switches, 50 hosts 180 switches, 432 hosts
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Fig. 2. Test topologies: a) mesh and b) fat tree.

Each path is made up of switches Vk and links Ek, where
Vk = {vi|vi ∈ ck} is the set of switches in cluster ck and
Ek = {ei,j |ei,j ∈ ck} is the set of links in cluster ck.

After initialization, the fitness value is calculated for each
initialization condition. In this paper, a fitness function cor-
responding to path utilization and congestion is taken into
consideration.

Let us assume that the generated initial population is I , such
that I = p1, p2, . . . , pk, the fitness function of cat k is given
as:

F (k) = min
(
Putilizationk × Pcongestionk , k ∈ C

)
, (9)

where Putilizationk defines how long a packet awaits to be
transmitted on the k-th path denoted by:

Putilizationk =
λk
µk
, (10)

This provides a good cost metric, since it is low for low
loads and goes to infinity for very high loads. Pcongestionk
defines the available bandwidth of the path and is inversely
proportional to its bandwidth, denoted by:

Pcongestionk =
1

Pbandwidthk
. (11)

The CSO-LF algorithm uses a swarm of cats to perform
a search for the possible path, with each cat representing
a candidate path. The algorithm iteratively updates the posi-
tion of each cat based on a Lévy flight step. The new position
is chosen from the list of possible paths based on the fit-
ness of the new position. If the fitness of the new position is
greater than the fitness of the current position, the cat moves
to the new location. This process continues until the assumed
number of iterations is reached.

4.4. Implementing CSO-LF Generated Paths in SDN

In SDN environments, after the CSO-LF algorithm has deter-
mined the best path for network traffic, the selected path must
be implemented as flow entries in the switches controlled by
the SDN controller. This process involves several steps:
• Path encoding and flow rule generation. The path se-

lected by the CSO-LF algorithm needs to be encoded into
a series of flow rules. Each flow rule specifies how the
network traffic that satisfies certain criteria should be treat-
ed. Typically, these flow rules include such information
as source and destination addresses, ports, and quality-of-
service requirements.
• Flow table update. The SDN controller processes the re-

ceived flow rules and updates the flow tables of the relevant
switches. Flow tables are used by switches to determine
how to forward network traffic. The SDN controller in-
stalls the new flow entries in the switches along the selected
path. If necessary, it may also remove any old flow entries
associated with the previous path.
• Flow table matching. When network traffic arrives at

a switch, the switch examines its flow table to determine
how to handle the traffic. The switch matches the incoming
packets with the installed flow rules. If a match is found,
the switch takes the specified action, such as forwarding
the traffic along the path defined by the flow rule.
• Packet forwarding. In the next step, network traffic is

forwarded by the switches along the path defined by the
flow rules. Switches ensure that traffic follows the chosen
path, and can also perform such actions as quality of
service (QoS) shaping, security checks, and other functions
specified by the flow rules.
• Dynamic path adaptation. In SDN environments, network

conditions and requirements may change. Therefore, the
SDN controller continuously monitors the network and can
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Fig. 3. Convergence plots for the three algorithms for an initial population of 50 agents in 100 iterations.

dynamically adapt flow entries if needed. If the controller
detects changes in the network, it can recalculate paths
(using the CSO-LF algorithm), generate new flow rules,
and update switches to reflect these changes.

By following these steps, the selected path generated by the
CSO-LF algorithm is implemented in the SDN network. This
dynamic and software-driven approach to path selection and
flow rule management is one of the key advantages of SDN, as
it facilitates efficient traffic engineering and offers adaptability
in response to changing network conditions.

4.5. Configuration and Setup

The software environment used for the CSO-LF experiment
is the Python 3.8.10 programming language. Other parameter
settings of the algorithm include: SMP = 2, CDC = 1, SRD
= 0.1, SPC = false, MR = 0.67. The parameters of the Lévy

component include β = 1.5 and α = 0.2. SDN simulations
were conducted in the Oracle VM VirtualBox 6.1 hypervisor
with a Linux Ubuntu (64-bit) operating system, Mininet
emulator, RYU controller, and an OpenFlow communication
protocol.

Two different network topologies of different sizes were used
to test the proposed method: mesh and fat tree topology.
These topologies were chosen for their different behaviors
and logical arrangements.

The mesh topology provides high redundancy and fault toler-
ance, while the tree topology offers hierarchical organizational
design, fault tolerance, and high-level scalability.

Figure 2 shows the different topologies connected to a central-
ized controller, while Tab. 4 shows different topology sizes
used to test the proposed algorithm.
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4.6. Performance Evaluation Method

In this research, latency and network throughput are consid-
ered to be key performance metrics. Throughput represents
the rate at which data is successfully transferred from a source
to a destination over a communication channel [28]. The equa-
tion to calculate throughput is:

Throughput =
Amount of data transferred

Time taken
. (12)

Latency, also known as delay, refers to the time it takes a data
packet to travel from its source to its destination. It includes
various components, such as transmission delay, propagation
delay, queueing delay, and processing delay. The equation
for calculating latency depends on the specific components
involved in the process, but may be simplified as:

Latency = Transmission delay+ Propagation delay

+ Queuing delay+ Processing delay
. (13)

5. Results and Discussions

In this section, the experimental results of the proposed
methodology are analyzed and its performance is evaluated.

5.1. CSO-LF

Three algorithms (i.e., CSO, PSO, and CSO-LF) are taken
through the optimization process for the chosen test functions.
In Tab. 5, the results of numerical experiments are displayed.
The results indicate that CSO-LF consistently achieves the
highest precision across all the test functions, especially
in Ackley, three-hump camel, Bohachevsky, sphere, sum
squares, and sum of different powers. It excels in locating
positions closest to the global minima with low scores, show-
casing superior convergence. In general, CSO-LF emerges as
the most accurate algorithm. This comparison suggests that
CSO-LF is the most effective solution for optimization tasks
that require a high degree of accuracy.
Figure 3 presents a collection of graphs comparing the con-
vergence properties of all three algorithms. The plots depict
the best optimization outcome after five trials.
The proposed approach, which converges within a compara-
tively smaller number of iterations, outperforms the other two
algorithms (CSO and PSO), according to the convergence
plots.

5.2. CSO-LF in SDN

The performance of CSO-LF in SDN is evaluated using la-
tency and throughput metrics across two different topologies.
The best-performing algorithm should have the lowest laten-
cy and the highest throughput. In Fig. 4a, it was observed that
CSO-LF generally underperformed in terms of latency, but
Fig. 4b shows it outperformed the original CSO as far as the
throughput measure is concerned.
In Figs. 4c–d, one may see that CSO-LF outperformed CSO
in terms of latency and throughput, while Fig. 4a shows that
the proposed method had the highest latency. This is because
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Fig. 4. Simulated latency and throughput results of the three algo-
rithms for: a-b) mesh topology and c-d) fat tree topology.

in a small-scale network, the distances between nodes are
relatively short. However, Lévy flights have occasional long
jumps, which may cause a search to go beyond adjacent nodes
and take a considerable amount of time to locate the optimal
path for transmission of a packet – hence the higher latency.
Furthermore, PSO recorded the lowest latency, highlighting
its potential use case in relatively smaller networks.
From Fig. 4b, it was also observed that the proposed method
had a lower throughput varying between 10 and 20 hosts, but
its value became higher as the number of hosts increased.
Again, Lévy flight steps take more time to converge to an
optimal solution in smaller networks due to the initial explo-
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Tab. 5. Comparison between CSO-LF, CSO, and PSO based on their positions and scores.

Function Algorithm Best score Best position Worst score Worst position

Ackley
CSO-LF –9.46 [ 2.6E–08, 6.9E–13] 3.58 [–8.19, –3.67]

CSO –8.46 [6.28, 6.28] 3.49 [–7.52, –2.99]
PSO –8.46 [6.28, 6.28] 3.31 [–3.96, 8.13]

Drop wave
CSO-LF –1.00 [–7.07E–15, –9.58E–13] –0.01 [–0.25, 0.66]

CSO –0.79 [0.18, 0.67] –0.05 [0.60, 4.74]
PSO –0.79 [–0.09, 0.06] –0.01 [ 3.73, –7.32]

Bukin
CSO-LF 0.10 [6.43E–19, –3.45E–20] 64.00 [–0.11, 0.41]

CSO 0.24 [9.99, 0.99] 235.6 [7.66, –4.96]
PSO 0.20 [10.00, 1.00] 46.98 [15.60, 2.21]

Three hump camel
CSO-LF 7.76E–34 [–2.76E–19, –2.78E–17] 140 779 [–9.83, 5.79]

CSO 9.30E–08 [1.02E–04, –3.24E–04] 148 414 [9.92, –1.84]
PSO 1.06E–25 [2.47E–13, –1.32E–13] 18 325 [7.07, –3.21]

Matyas
CSO-LF 1.06E–31 [–2.36E–21, 6.38E–16] 0.22 [–0.09, –0.05]

CSO 4.27E–05 [–0.01, –0.01] 123.87 [8.68, –9.85]
PSO 3.83E–18 [4.03E–09, 2.73E–09] 3.26 [–4.62, –2.87]

Bohachevsky
CSO-LF 0.0 [–2.80E–27, –2.05E–28] 0.60 [–0.56, –0.07]

CSO 1.23E–10 [2.23E–06, –1.24E–06] 171.16 [7.65, 7.48]
PSO 0.0 [–1.36E–09, 1.23E–09] 59.59 [2.19, –5.20]

Sphere
CSO-LF 1.11E–24 [1.57E–14, –1.05E–12] 2.36 [0.93, –0.61]

CSO 7.73E–06 [–0.01, 0.01] 121.58 [4.77, –5.93]
PSO 2.23E–17 [2.06E–09, 1.99E–10] 82.70 [3.04, 1.69]

Sum squares
CSO-LF 1.69E–20 [ 4.33E–11, 1.29E–15] 976.26 [–1.72, 8.39]

CSO 2.71E–06 [–0.01, 0.01] 703.72 [1.32, 7.91]
PSO 1.42E–17 [–2.87E–10, 5.55E–10] 323.38 [0.19, 1.11]

Tab. 6. Average performance for mesh and fat tree topologies.

Topology Latency [ms] Throughput [Gbps]

C
SO

-L
F

C
SO PS

O

C
SO

-L
F

C
SO PS

O

Mesh 9.50 8.37 6.82 25.26 22.50 16.85
Fat tree 5.48 11.51 13.16 27.27 23.40 23.02

Tab. 7. Percentage difference in performance between CSO-LF and
CSO.

Topology Latency Throughput

Mesh –32.84% 39.94%
Fat tree 82.40% 16.90%

ration phase, which can result in lower throughput during this
convergence period. In larger networks, the algorithm has
more opportunities to explore and discover better paths, and

Tab. 8. Percentage difference in performance between CSO-LF and
PSO.

Topology Latency Throughput

Mesh –12.65% 11.56%
Fat tree 70.98% 15.28%

the convergence phase may be shorter relative to the size of
the network, leading to larger throughput values.
Tables 7–8 show the percentage differences in performance
between CSO-LF and two other optimization algorithms,
CSO and PSO, across two network topologies.
In the mesh topology, CSO-LF’s latency is 12.65% higher
compared to CSO, indicating that CSO performs better in
terms of latency in this topology. In terms of throughput,
CSO-LF shows an 11.56% improvement over CSO, suggest-
ing that CSO-LF achieves higher throughput in the mesh
topology. In the fat tree topology, the percentage differences
are more substantial. CSO-LF exhibits a significantly lower
latency (70.98%) compared to CSO, indicating a substan-
tial improvement in latency performance. For throughput,
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CSO-LF also shows a 15.28% improvement over CSO in the
fat tree topology, although the difference is not as significant
as in the case of latency.

In the mesh topology, CSO-LF shows a latency that is 32.84%
higher compared to PSO, indicating that PSO performs bet-
ter in terms of latency in this network topology. However,
in terms of throughput, CSO-LF demonstrates a substantial
improvement (39.94%) over PSO, suggesting that CSO-LF
achieves significantly higher throughput in the mesh topology
compared to PSO. In the fat tree topology, CSO-LF again ex-
hibits a significant improvement over PSO, with a difference
of 82.40% in terms latency and 16.90% in terms of through-
put. This indicates that CSO-LF outperforms PSO by a large
margin, both in terms of latency and throughput, in the fat
tree topology.

In general, the latency increased and the throughput decreased
with increasing network size. However, CSO-LF generally
shows superior performance compared to CSO and PSO in
terms of both latency and throughput. The analysis reveals that
the proposed method exhibits lower latency, resulting in faster
response and reduced data transmission delays. Additionally,
it achieves higher throughput, enabling more efficient data
transfer and improved network capacity utilization.

6. Conclusions

This research introduces CSO-LF as a prospective solution
for tackling optimization problems, particularly in SDN link
load balancing. While CSO demonstrates rapid convergence,
making it ideal for applications requiring quick respons-
es, its vulnerability to become stuck in local optima poses
a limitation. CSO-LF addresses this issue by integrating the
Lévy flight technique, thus augmenting search optimality
and offering improved performance in navigating complex
optimization landscapes.

The proposed method was evaluated on nine popular func-
tions. The numerical results showed that CSO-LF achieved
the best scores in terms of the best and worst positions. When
implemented in SDN for link load balancing, CSO-LF record-
ed a lower latency and a throughput that was 15.28% higher
compared to CSO, and latency that was 82.40% lower when
compared to PSO in the fat tree topology. Its versatility sug-
gests potential applications in controller placement, virtual
network mapping, flow entry optimization, and signal pro-
cessing.

Future research efforts should consider investigating the scal-
ing parameter, which plays a pivotal role in determining Lévy
flight step sizes. Furthermore, CSO-LF’s application to solve
various networking optimization challenges beyond load bal-
ancing should be explored as well, and comparative studies
with other algorithms should be conducted for broader vali-
dation. Evaluation of its scalability and performance in even
larger and more complex network environments (such as
multicontroller scenarios) is crucial for real-world use.
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