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Abstract—In recent years a cryptographic community is pay-

ing a lot of attention to the constructions of so called resilient

functions for use mainly in stream cipher systems. Very little

work however has been devoted to random generation of such

functions. This paper tries to fill that gap and presents an al-

gorithm that can generate at random highly nonlinear resilient

functions. Generated functions are analyzed and compared

to the results obtained from the best know constructions and

some upper bounds on nonlinearity and resiliency. It is shown

that randomly generated functions achieve in most cases re-

sults equal to the best known designs, while in other cases fall

just behind such constructs. It is argued that the algorithm

can perhaps be used to prove the existence of some resilient

functions for which no mathematical prove has been given

so far.

Keywords—cryptography, ciphers, Boolean functions, correla-

tion immunity, reslilience, random generation.

1. Introduction

Boolean functions play an important role in virtually any

modern cryptographic system – be it block or stream ci-

phers, private or public key systems, authentication al-

gorithms, etc. As security of these systems relies on

Boolean functions these functions should posses some

specific criteria that would protect a cryptographic sys-

tem from any existing cryptanalytic attacks, and preferably

make it also immune against any attacks that might be de-

signed in the future. These criteria are called cryptographic

criteria.

It is widely accepted among cryptologists that most impor-

tant criteria are balancedness, high nonlinearity, propaga-

tion criteria, correlation immunity, high algebraic degree.

Unfortunately no Boolean function exists that would fulfil

all of these criteria to the maximum, so finding a crypto-

graphically strong Boolean functions is always a trade-off

between these criteria and is not a trivial task.

In particular, a functions whose output leaks no information

about its input values is of great importance. Such func-

tions are called correlation immune Boolean functions and

were introduced by T. Siegenthaler in 1984 [32] and ever

since then have been a topic of active research. A balanced

correlation immune function is called a resilient function.

As balancedness is one criterion that should be fulfilled

under any circumstances, resilience is a criterion most of-

ten mentioned in the scientific literature when one talks

about correlation immunity.

Most of the cryptographic criteria is in one way or another

related to nonlinearity of the Boolean function. Highest

nonlinearity is very desirable so most of the research con-

centrates on fulfilling the cryptographic criteria while main-

taining a highest possible nonlinearity, which very often

(virtually always) has to be sacrificed to some extent.

The approach to finding a good cryptographic functions

is most often based on specific algebraic constructions of

Boolean functions with desirable properties – like highly

nonlinear Boolean function with high order of resiliency.

Or constructing bent functions (functions with highest pos-

sible nonlinearity) and then modifying them to fulfil other

cryptographic criteria.

In the article the author argues that the use of randomly cho-

sen Boolean functions with good cryptographic properties

(if we are able to find such functions) is probably better

than the use of functions with similar parameters which

are obtained by explicit constructions. The main reason is

that explicit constructions usually lead to functions which

have very particular (algebraic or combinatorial) structures,

which may induce weaknesses regarding existing or future

attacks. Therefore, author considered finding and studying

randomly generated Boolean functions (at least with a few

inputs and outputs) with good cryptographic properties, to

be of high interest.

Based on a algorithm designed by the author which can

generate highly nonlinear functions at random, some com-

parative results are presented that give an insight to differ-

ences between constructed and generated Boolean function

with good cryptographic properties.

Particular emphasis of the paper is on resiliency of highly

nonlinear functions. The random generation algorithm man-

ages to output balanced functions which in some cases have

the highest achievable nonlinearity for a particular number

of variables and/or have higher nonlinearity then some of

the modern methods for obtaining cryptographically strong

Boolean functions.

The paper is organized as follows. Section 2 provides some

basic definitions and notations that are used throughout the

remainder of the article. In Section 3 a random function

generator is described, which is used as a foundation for

obtaining highly nonlinear resilient functions. Experimen-

tal results and comparisons to other research are given in

Section 4. Then conclusions follow in Section 5.
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2. Preliminaries

We use square brackets to denote vectors like [a1, . . . ,an]
and round brackets to denote functions like f (x1, . . . ,xn).

2.1. Boolean function

Let GF(2) = 〈∑,⊕,•〉 be two-element Galois field, where

∑ = {0,1}, ⊕ and • denotes the sum and multiplication

mod 2, respectively. A function f : ∑
n 7→ ∑ is an n-ar-

gument Boolean function. Let z = x1 · 2
n−1 + x2 · 2

n−2 +
. . . + xn · 2

0 be the decimal representation of argu-

ments (x1,x2, . . . ,xn) of the function f . Let us denote

f (x1,x2, . . . ,xn) as yz. Then [y0,y1, . . . ,y2n−1] is called

a truth table of the function f .

2.2. Linear and nonlinear Boolean functions

An n-argument Boolean function f is linear if it can

be represented in the following form: f (x1,x2, . . . ,xn) =
a1x1 ⊕ a2x2 ⊕ . . . ⊕ anxn. Let Ln be a set of all n-ar-

gument linear Boolean functions. Let Mn = {g : ∑
n 7→

∑ | g(x1,x2, . . . ,xn) = 1 ⊕ f (x1,x2, . . . ,xn) and f ∈ Ln}.

A set An = Ln ∪Mn is called a set of n-argument affine

Boolean functions. A Boolean function f : ∑
n 7→ ∑ that is

not affine is called a nonlinear Boolean function.

2.3. Balance

Let N0[y0,y1, . . . ,y2n−1] be a number of zeros (0’s)

in the truth table [y0,y1, . . . ,y2n−1] of function f , and

N1[y0,y1, . . . ,y2n−1] be a number of ones (1’s). A Boolean

function is balanced if

N0[y0,y1, . . . ,y2n−1] = N1[y0,y1, . . . ,y2n−1] .

2.4. Algebraic normal form

A Boolean function can also be represented as a maxi-

mum of 2
n coefficients of the algebraic normal form (ANF).

These coefficients provide a formula for the evaluation of

the function for any given input x = [x1,x2, . . . ,xn]:

f (x) = a0 ⊕
n

∑
i=1

aixi ⊕ ∑
1≤i< j≤n

ai jxix j ⊕ . . .⊕a12...nx1x2 . . .xn ,

where ∑, ⊕ denote modulo 2 summation.

The order of nonlinearity of a Boolean function f (x)
is a maximum number of variables in a product term

with non-zero coefficient aJ , where J is a subset of

{1,2,3, . . . ,n}. In the case where J is an empty set the

coefficient is denoted as a0 and is called a zero order coeffi-

cient. Coefficients of order 1 are a1,a2, . . . ,an, coefficients

of order 2 are a12,a13, . . . ,a(n−1)n, coefficient of order n

is a12...n. The number of all ANF coefficients equals 2
n.

Let us denote the number of all (zero and non-zero) coef-

ficients of order i of function f as σi( f ). For n-argument

function f there are as many coefficients of a given or-

der as there are i-element combinations in n-element set,

i.e., σi( f ) =
(

n
i

)

.

2.5. Hamming distance

Hamming weight of a binary vector x ∈ ∑
n, denoted as

hwt(x), is the number of ones in that vector.

Hamming distance between two Boolean functions f ,g :

∑
n 7→ ∑ is denoted by d( f ,g) and is defined as follows:

d( f ,g) = ∑
x∈∑

n

f (x)⊕g(x) .

The distance of a Boolean function f from a set of n-ar-

gument Boolean functions Xn is defined as follows:

δ ( f ) = min
g∈Xn

d( f ,g) ,

where d( f ,g) is the Hamming distance between functions f

and g. The distance of a function f a set of affine func-

tions An is the distance of function f from the nearest func-

tion g ∈ An.

The distance of function f from a set of all affine func-

tions is called the nonlinearity of function f and is denoted

by N f .

2.6. Bent functions

A Boolean function f : ∑
n 7→∑ is perfectly nonlinear if and

only if f (x)⊕ f (x⊕α) is balanced for any α ∈ ∑
n such

that 1 ≤ hwt(α) ≤ n.

For a perfectly nonlinear Boolean function, any change of

inputs causes the change of the output with probability

of 0.5.

Meier and Staffelbach [24] proved that the set of per-

fectly nonlinear Boolean functions is the same as the set of

Boolean bent functions defined by Rothaus [29].

Perfectly nonlinear functions (or bent functions) have the

same, and the maximum possible distance to all affine func-

tions.

Bent functions are not balanced. Hamming weight of a bent

function equals 2
n−1 ±2

n
2
−1.

2.7. Walsh transform

Let x = (x1,x2, . . . ,xn) and ω = (ω1,ω2, . . . ,ωn) both be-

long to {0,1}n and x•ω = x1ω1,x2ω2, . . . ,xnωn. Let f (x)
be a Boolean functions on n variables. Then the Walsh

transform of f (x) is a real valued function over {0,1}n that

can be defined as:

Wf (ω) = ∑
x∈{0,1}n

(−1) f (x)⊕xω .

The Walsh transform is sometimes called the spectral dis-

tribution or simply the spectra of a Boolean function. It is

an important tool for the analysis of Boolean function.

2.8. Correlation immunity and resilience

Guo-Zhen and Massey [13] have provided a spectral char-

acterisation of correlation immune functions using Walsh
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transform. We can use that as a definition of correlation

immunity:

A function f (x1, x2, . . . , xn) is m-order correlation im-

mune (CI) iff its Walsh transform Wf satisfies Wf = 0,

for 1 ≤ hwt(ω) ≤ m. Note that balanced m-order corre-

lation immune functions are called m-resilient functions

and if f is balanced then Wf (0) = 0. Thus, a function

f (x1,x2, . . . ,xn) is m-resilient iff its Walsh transform W f

satisfies Wf (ω) = 0, for 0 ≤ hwt(ω) ≤ m.

By an (n,m,d,x) function we mean an n-variable, m-re-

silient (balanced m-order CI) function with degree d and

nonlinearity x. In the above notation the degree component

is replaced by a ’-’ (i.e., (n,m,−,x)), if we do not want to

specify a degree.

3. Random generation of highly

nonlinear functions

As already mentioned earlier, so called bent Boolean

functions achieve the highest possible nonlinearity. There

exist a number of algorithms for constructing bent

Boolean functions. Such constructions have been given by

Rothaus [29], Kam and Davida [15], Maiorana [17],

Adams and Tavares [1], and others.

Most of the known bent function constructions take bent

functions of n arguments as their input and generate bent

functions of n+2 arguments. One major drawback of these

methods is the fact that they are deterministic. Only short

bent functions (n = 4 or 6) are selected at random and the

resulting function is obtained using the same, deterministic

formula every time. The possible drawback of such ap-

proach (constructions) were stated in the beginning of this

paper.

Drawing bent functions at random is not feasible already

for small number of arguments (n > 6). To make such

generation possible, an algorithm was designed that gen-

erates random Boolean functions in algebraic normal form

thus making use of some basic properties of bent functions

to considerably narrow the search space. This makes the

generation of bent functions feasible for n > 6.

The algorithm for the generation of bent functions in ANF

domain takes as its input the minimum and maximum num-

ber of ANF coefficients of every order that the resulting

functions are allowed to have. Since the nonlinear order

of bent functions is less or equal to n/2, clearly in ANF

of a bent function can not be any ANF coefficient of order

higher then n/2. This restriction is the major reason for

random generation feasibility, since it considerably reduces

the possible search space.

However the fact that bent functions are not balanced pro-

hibits their direct application in the cipher system. Still, as

bent functions achieve maximum possible nonlinearity they

are often used as a foundation for constructing highly non-

linear balanced functions. In recent years some methods

have been proposed that transform bent functions to bal-

anced Boolean functions with minimal loss in nonlinearity.

Examples of such methods are given in [18] and [19]. Still,

balancing bent function can lead to low order of resiliency.

In a quest for a randomly generated, highly nonlinear func-

tion with higher order resiliency the above mentioned ran-

dom bent function generation algorithm has been modified

to generate such functions. Here again some specific prop-

erties of resilient functions are crucial.

As already stated there are certain trade-offs involved

among the parameters of a cryptographically sound

Boolean function. As it has been showed by Siegen-

thaler [32] for an n-variable function, of degree d and order

of correlation immunity m the following holds: m+d ≤ n.

Further, if the function is balanced then m+d ≤ n−1.

The generating algorithm is used basically in the same way

as when generating bent functions. Still it operates in the

ANF domain and it takes as its input the number mini-

mal and maximal number of coefficients of every order.

Nonlinear order is restricted according to Siegenthalter’s

findings and some more precise upper bounds on resilient

order given by Sarkar and Maitra in [30].

Sarkar and Maitra in [30] present some construction meth-

ods for highly nonlinear resilient functions and give upper

bounds on nonlinearity of resilient functions.

For the sake of completeness a Maiorana-McFarland like

construction technique will now be briefly discussed. This

technique is perhaps the most important of all resilient

Boolean functions construction methods and has been in-

vestigated in a number of papers [2, 3, 5, 31]. This con-

struction has been used by Maitra and Sarkar as a basis for

their work.

Let π be a map from {0,1}r to {0,1}k, where for any

x ∈ {0,1}r, hwt(π(x)) ≥ m + 1. Let f : {0,1}r+k 7→ {0,1}
be a Boolean function defined as f (x,y) = y•π(x)⊕g(x),
where x ∈ {0,1}r, y ∈ {0,1}k and y•π(x) is the inner prod-

uct of y and π(x). Then f is m-resilient.

Table 1

Upper bounds on nonlinearity of resilient functions

5 6 7 8 9 10

1 12 24 56 116* 244* 492*

2 8 24 56* 112 240 480

3 0 16 48 112 240* 480

4 0 32 96 224 480*

5 0 64 192 448

6 0 128 384

7 0 256

8 0

Table 1 summarises the results obtained in [30] and gives

upper bounds on nonlinearity of resilient functions for num-

ber of arguments ranging from 5 to 10. The rows repre-

sent the resiliency and the columns represent the number

of variables. Entries with * indicate bounds which have

not yet been achieved. Functions can be constructed with

parameters satisfying the other entries.
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Table 1 can be used as a benchmark for assessing the effi-

cacy of resilient functions construction methods.

4. Experimental results

Now let’s see the results from above mentioned random

resilient function generator against the upper bounds pre-

sented in Table 1.

The maximum nonlinearity is known for all Boolean func-

tions on even number of variables – it is achieved by

bent functions. The maximum nonlinearity for odd variable

Boolean functions is known for n ≤ 7. Also, maximum

nonlinearity question is solved for balanced and resilient

functions on n variables for n ≤ 5 (which is easy to do

by exhaustive computer search). Let’s consider cases for

6 ≤ n ≤ 10.

• n = 6: Maximum nonlinearity for n = 6 is 28 (for

bent functions). Maximum nonlinearity of a bal-

anced function is 26 and construction of such func-

tions is known. Maximum nonlinearities for 1, 2 and

3-resilient functions were shown (be computer

search) to be 24, 24 and 16. Random resilient func-

tion generator presented in this paper is able to gen-

erate 1, 2 and 3-resilient functions.

• n = 7: Maximum nonlinearity of a balanced Boolean

functions for n = 7 is 56. As shown in [30] the

maximum nonlinearities for 1, 2, 3 and 4-resilient

functions are respectively 56, 56, 48, 32. However

2-resilient function with nonlinearity of 56 is not

known. Random generator is able to generate all

these resilient functions except that (7,2,-,56).

• n = 8: Nonlinearity of 8 argument bent function is

120. Maximum (theoretical) nonlinearity for a bal-

anced function is 118, however such function if not

known. Maximum possible nonlinearities for 1, 2,

3, 4 and 5-resilient functions are 116, 112, 112,

96, and 64. The existence of (8,1,-,116) function

is an open problem. Constructions for other func-

tions are known. Random generator can output all

the functions except the not known (8,1,-,116) and

(8,3,-,112).

• n = 9: Maximum nonlinearity of such functions as

an open problem. The known upper bound if 244.

It is easy to construct a function with nonlinearity

of 240. Maximum nonlinearities of resilient func-

tions are 244, 240, 240, 224, 192, 128 for 1, 2, 3,

4, 5, 6-resilient functions respectively. The genera-

tor is capable of generating (9,1,-,240), (9,2,-,224),

(9,5,-,192) and (9,6,-,128) functions.

• n = 10: The nonlinearity of a bent function is 496.

Maximum nonlinearity of a balanced function is 494,

best know function has linearity of 492. 492, 488,

480, 480, 448, 384, 256 are the nonlinearities of

1,2, 3, 4, 5, 6, 7-resilient function. Constructions of

the following functions are not known: (10,1,-,492),

(10,1,-,488), (10,2,-,488), (10,4,-,480). Random

generator can generate the following: (10,1,-,480),

(10,3,-,448), (10,5,-,384), (10,7,-,256).

5. Conclusions

As shown in the previous paragraph, the random resilient

function generator is capable of generating Boolean func-

tions having some very promising cryptographic qualities.

In many cases these functions are on par with the best

known constructions. In other cases they fall slightly short

of best achievable results. In any case they have the ad-

vantage of being truly random and not being restricted by

specific constraints associated with each specific design.

One can suspect that such constraints may render the func-

tion (or a cipher system based on it) vulnerable to some

future cryptographic attack.

Also, results presented in this article are the very first re-

sults from the resilient function generator. It’s output re-

lies heavily on parameter setting, mainly on the number

of higher order ANF coefficients in the resulting function.

As this dependencies are investigated we might expect still

better results from the generator.

As with generated bent functions, also generated resilient

functions can have a very compact (small) algebraic normal

form which can be utilized for efficient storage and fast

cryptographic routines.
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