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Abstract—Telecommunications networks are facing increas-

ing demand for Internet services. Therefore, the problem of

telecommunications network design with the objective to max-

imize service data flows and provide fair treatment of all ser-

vices is very up-to-date. In this application, the so-called max-

min fair (MMF) solution concept is widely used to formulate

the resource allocation scheme. It assumes that the worst

service performance is maximized and the solution is addi-

tionally regularized with the lexicographic maximization of

the second worst performance, the third one, etc. In this pa-

per we discuss solution algorithms for MMF problems related

to telecommunications network design. Due to lexicographic

maximization of ordered quantities, the MMF solution concept

cannot be tackled by the standard optimization model (mathe-

matical programme). However, one can formulate a sequential

lexicographic optimization procedure. The basic procedure is

applicable only for convex models, thus it allows to deal with

basic design problems but fails if practical discrete restrictions

commonly arriving in telecommunications network design are

to be taken into account. Then, however, alternative sequen-

tial approaches allowing to solve non-convex MMF problems

can be used.

Keywords— network design, resource allocation, fairness, lexi-

cographic optimization, lexicographic max-min.

1. Introduction

Since the emergence of the Internet one has witnessed
an unprecedented growth of traffic that is carried in the
telecommunications networks. The pace at which the num-
ber of network users and the amount of traffic related to
data-oriented applications are growing has been and still
is much higher than several percent of growth that were
typical for traditional voice-only networks; as a matter of
fact data traffic almost doubles every year. It can also be
observed that the distribution of traffic in data networks
changes quickly, both – in the short and long time-scales,
and is very difficult to predict. As a result, from the net-
work operator’s perspective the network extension process
becomes very complicated – while it is not economically
feasible to sufficiently over-dimension a network, it is also
hard to decide when and where the network should be aug-
mented. An inevitable effect of the situation that the ca-
pacity of a network does not match the traffic generated by
network service users, is network overload – a phenomenon
commonly encountered in current data-oriented networks.

Overloads influence the quality of service perceived by
users – data transfer slows down because packet transfer
delays increase and packet losses occur much more fre-

quently. Overloads are one of the major concerns of net-
work operators, because the guaranteed quality of service
level is one of the basic elements of network operators’
differentiation and a prerequisite of their success. In order
to avoid overloads and provide the guaranteed quality of
service level (instead of offering the so-called best-effort
service) the network operator must control the amount of
traffic that enters the network. The traffic admission control
process is responsible for deciding how many users can be
served and how much traffic each of these users can gen-
erate. What is important is that, in general, some users
will be denied the service in order to reduce the overall
stream of traffic that enters the network. Since the ser-
vice denial probability is another important measure of the
quality of service level, one of the primary objectives of
the admission control process must be to guarantee that the
users have fair access to network services. The most com-
mon “fairness-oriented” (as opposed to “revenue-oriented”)
approach is to admit equal amount of traffic from every
stream – the amount being expressed in absolute or rel-
ative terms. Unfortunately, this approach can result in
poor network capacity utilization, since for many streams
much more traffic could still be admitted than this actual
amount. Thus, one of the alternative approaches is to admit
as much traffic as possible from every stream while making
the smaller admitted amounts as large as possible.

The problem to determine how much traffic of every traf-
fic stream should be admitted into the network, and how
the admitted traffic should be routed through the network
so as to satisfy the requirements of high network utiliza-
tion and to guarantee fairness to the users, is one of the
most challenging problems of current telecommunications
networks design. In this paper we show how this problem
is related to two well known OR problems – namely the
max-min optimization problem and the lexicographic op-
timization problem. We study the general formulations of
these problems and analyze how to use their notions to ex-
press the fairness of the traffic admission process. We go on
to formulate basic network design problems and study the
complexity of the obtained formulations. We analyze the
methods of max-min and lexicographic optimization and
examine how they can be applied to solve the presented
network design problem.

The paper is organized as follows. In Section 2 we in-
troduce the lexicographic max-min or the max-min fair
(MMF) solution concept and summarize its major prop-
erties. In Section 3 we present details of three telecommu-
nications problems leading to MMF formulations. Further
in Section 4 we discuss solution algorithms for the lexico-
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graphic max-min optimization and analyze their applicabil-
ity for telecommunications problems.

2. Max-min and the MMF concept

2.1. Max-min solution concepts

The problem we consider may be viewed in terms of
resource allocation decisions as follows. Let us assume
there is a set of m services. There is also a set Q of re-
source allocation patterns (allocation decisions). For each
service j a function f j(x) of allocation pattern x has been
defined. This function, called the individual objective func-
tion, measures the outcome (effect) y j = f j(x) of the allo-
cation pattern for service j. The outcomes can be mea-
sured (modeled) as service quality, service amount, service
time, service costs as well as in a more subjective way the
(client’s) utility of the provided service. In typical formu-
lations a greater value of the outcome means a better effect
(higher service quality or client satisfaction); otherwise, the
outcomes can be replaced with their complements to some
large number. Therefore, without loss of generality, we
can assume that each individual outcome y j is to be max-
imized which results in a multiple criteria maximization
model. The problem can be formulated as follows:

max {f(x) : x ∈ Q} , (1)

where Q⊆ℜn is a feasible set and f(x) = ( f1(x), . . . , fm(x))
is a vector of real-valued functions f j : Q → ℜ, j =
1,2, . . . ,m, where x = (x1,x2, . . . ,xn) is an n-vector. We
refer to the elements of the criterion space as outcome
vectors. An outcome vector y is attainable if it expresses
outcomes of a feasible solution x ∈ Q (i.e., y = f(x)). The
set of all the attainable outcome vectors is denoted by Y .
Note that, in general, convex feasible set Q and concave
function f do not guarantee convexity of the corresponding
attainable set Y . Nevertheless, the multiple criteria maxi-
mization model (1) can be rewritten in the equivalent form

max {y : y j ≤ f j(x) ∀ j, x ∈ Q} , (2)

where the attainable set Y is convex whenever Q is convex
and functions f j are concave.
Model (1) only specifies that we are interested in maximiza-
tion of all objective functions f j for j ∈ M = {1,2, . . . ,m}.
Each attainable outcome vector y ∈ Y is called nondomi-

nated if one cannot improve any individual outcome with-
out worsening another one. Each feasible solution x ∈ Q
generating the nondominated outcome is called an effi-

cient (Pareto-optimal) solution of the multiple criteria prob-
lem (1). In other words, a feasible solution for which
one cannot improve any outcome without worsening an-
other is efficient [33]. In order to make model (1) opera-
tional, one needs to assume some solution concept speci-
fying what it means to maximize multiple objective func-
tions. Simple solution concepts are defined by achievement

functions θ : Y → ℜ to be maximized. Thus the multi-
ple criteria problem (1) is replaced with the aggregation
max {θ(f(x)) : x ∈ Q}.
The most commonly used achievement function is the mean
(or simply the sum) of individual performances; this de-
fines the so-called maxsum solution concept. This solution
concept is primarily concerned with the overall system effi-
ciency. As based on averaging, it often provides a solution
where some services are discriminated in terms of perfor-
mances. An alternative approach depends on the so-called
max-min solution concept, where the worst performance is
maximized:

max{ min
j=1,...,m

f j(x) : x ∈ Q }. (3)

The max-min solution concept has been widely studied in
the multi-criteria optimization methodology [33, 35]. The
optimal set of the max-min problem (3) always contains
an efficient solution of the original multiple criteria prob-
lem (1). Thus, if unique, the optimal max-min solution is
efficient. In the case of multiple optimal solutions, one of
them is efficient but also some of them may not be effi-
cient. It is a serious flaw since practical large problems
usually have multiple optimal solutions and typical opti-
mization solvers generate one of them (essentially at ran-
dom). Therefore, some additional regularization is needed
to overcome this flaw of the max-min scalarization.
The max-min solution concept is regarded as maintaining
equity. Indeed, in the case of a simplified resource alloca-
tion problem, the max-min solution

max{ min
j=1,...,m

y j :
m

∑
j=1

y j ≤ b } (4)

takes the form ȳ j = b/m for all j ∈ M thus meeting the per-
fect equity requirement ȳ1 = ȳ2 = . . . = ȳm. In the general
case, with possibly more complex feasible set structure, this
property is not fulfilled [23]. Nevertheless, the following
assertion is valid.

Theorem 1: If there exists a nondominated outcome vector
ȳ ∈ Y satisfying the perfect equity requirement ȳ1 = ȳ2 =
. . . = ȳm, then ȳ is the unique optimal solution of the max-
min problem

max{ min
j=1,...,m

y j : y ∈ Y }. (5)

Proof: Let ȳ ∈Y be a nondominated outcome vector
satisfying the perfect equity requirement. This means, there
exists a number α such that ȳ j = α for j = 1,2, . . . ,m. Let
y ∈ Y be an optimal solution of the max-min problem (5).
Suppose, there exists some index j0 such that y j0 6= ȳ j0.
Due to the optimality of y, we have:

y j ≥ min
1≤i≤m

yi ≥ min
1≤i≤m

ȳi = α = ȳ j ∀ j = 1, . . . ,m

which together with y j0 6= ȳ j0 contradicts the assumption
that ȳ is nondominated.

44



Telecommunications network design and max-min optimization problem

According to Theorem 1, the perfectly equilibrated out-
come vector is a unique optimal solution of the max-min
problem if one cannot improve any of its individual out-
come without worsening some others. Unfortunately, it is
not a common case and, in general, the optimal set to the
max-min aggregation (3) may contain numerous alternative
solutions including dominated ones. While using standard
algorithmic tools to identify the max-min solution, one of
many solutions is then selected randomly.

Actually, the distribution of outcomes may make the max-
min criterion partially passive when one specific outcome
is relatively very small for all the solutions. For instance,
while allocating clients to service facilities, such a situa-
tion may be caused by existence of an isolated client lo-
cated at a considerable distance from all the location of
facilities. Maximization of the worst service performances
(equivalent to minimization of the maximum distance) is
then reduced to maximization of the service performances
for that single isolated client leaving other allocation deci-
sions unoptimized. This is a clear case of inefficient so-
lution where one may still improve other outcomes while
maintaining fairness by leaving at its best possible value
the worst outcome. The max-min solution may be then
regularized according to the Rawlsian principle of justice.
Rawls [30] considers the problem of ranking different “so-
cial states”which are different ways in which a society might
be organized taking into account the welfare of each in-
dividual in each society, measured on a single numerical
scale [30, p. 62]. Applying the Rawlsian approach, any
two states should be ranked according to the accessibility
levels of the least well–off individuals in those states; if the
comparison yields a tie, the accessibility levels of the next–
least well–off individuals should be considered, and so on.
Formalization of this concept leads us to the lexicographic
max-min concepts.

The lexicographic max-min solution is known in the game
theory as the nucleolus of a matrix game. It originates
from an idea, presented by Dresher [7], to select from the
optimal (max-min) strategy set of a player a subset of opti-
mal strategies which exploit mistakes of the opponent op-
timally. It has been later refined to the formal nucleolus
definition [32] and generalized to an arbitrary number of
objective functions [29]. The concept was early considered
in the Tschebyscheff approximation [31] as a refinement
taking into account the second largest deviation, the third
one and further to be hierarchically minimized. Similar
refinement of the fuzzy set operations has been recently
analyzed [8]. Within the telecommunications or network
applications the lexicographic max-min approach has ap-
peared already in [3, 11] and now under the name max-
min fair is treated as one of the standard fairness concepts.
The approach has been used for general linear program-
ming multiple criteria problems [1, 17], as well as for spe-
cialized problems related to (multiperiod) resource alloca-
tion [12, 16]. In discrete optimization it has been con-
sidered for various problems [4, 5] including the location-
allocation ones [21].

2.2. Lexicographic optimization and MMF

Typical solution concepts for the multiple criteria problems
are based on the use of aggregated achievement functions
θ : Y → ℜ to be maximized, thus ranking the outcomes
according to a complete preorder

y′ �θ y′′ ⇔ θ(y′) ≥ θ(y′′). (6)

This allows one to replace the multiple criteria problem (1)
with the maximization problem max {θ(f(x)) : x ∈ Q}.
However, there are well defined solution concepts which do
not introduce directly any scalar measure, despite they rank
the outcome vectors with a complete preorder. Especially,
the lexicographic order is used for this purpose.
Let a = (a1,a2, . . . ,am) and b = (b1,b2, . . . ,bm) be two m-
vectors. Vector a is lexicographically greater than vector
b, a >lex b, if there exists index k, 0 ≤ k < m, such that
a j = b j for all j ≤ k and ak+1 > bk+1. Consequently, a is
lexicographically greater or equal b, a ≥lex b, if a >lex b
or a = b. Contrary to the standard vector inequality

a >
= b ⇔ a j ≥ b j∀ j, the lexicographic order is complete

which means that for any two vectors a and b either a≥lex b
or b ≥lex a. Moreover, for any two different vectors a 6= b
either a >lex b or b >lex a. Vector inequality a >

= b im-
plies a≥lex b but the opposite implication is not valid. The
lexicographic order is not continuous and it cannot be ex-
pressed in terms of any aggregation function. Nevertheless,
it is a limiting case of the order (6) for the weighting aggre-
gation functions θ(y) = ∑m

j=1 w jy j defined by decreasing
sequences of positive weights w j with differences tending
to the infinity.
The lexicographic order allows us to consider more com-
plex solution concepts defined by several (say m) outcome
functions θk : Y → ℜ to be maximized according to the
lexicographic order. Thus one seeks a feasible solution x0

such that for all x ∈ Q

(θ1(f(x0)), . . . ,θm(f(x0))) ≥lex (θ1(f(x)), . . . ,θm(f(x))).

In other words, the multiple criteria problem (1) is replaced
with the lexicographic maximization problem

lexmax {(θ1(f(x)),θ2(f(x)), . . . ,θm(f(x))) : x ∈ Q}. (7)

Problem (7) is not a standard mathematical programme.
Nevertheless, the lexicographic inequality defines a linear
order of vectors an therefore the lexicographic optimiza-
tion is a well defined procedure where comparison of real
numbers is replaced by lexicographic comparison of the
corresponding vectors. In particular, the basic theory and
algorithmic techniques for linear programming have been
extended to the lexicographic case [10]. Certainly, the lex-
icographic optimization may also be treated as a sequential
(hierarchical) optimization process where first θ1(f(x)) is
maximized on the entire feasible set, next θ2(f(x)) is max-
imized on the optimal set, and so on. This may be imple-
mented as in the following standard sequential algorithm.

45



Włodzimierz Ogryczak, Michał Pióro, and Artur Tomaszewski

Algorithm 1: Sequential lexicographic maximization

Step 0: Put k := 1.
Step 1: Solve programme Pk:

max
x∈Q

{τk; τk ≤ θk(f(x)), τ0
j ≤ θ j(f(x)) ∀ j < k}

and denote the optimal solution by (x0,τ0
k ).

Step 2: If k = m, then stop (x0 is optimal solution).
Otherwise, put k := k +1 and go to Step 1.

Note that directly from the properties of the lexicographic
order it follows that for any achievement functions θk the
lexicographic optimization problem always has unique val-
ues of those functions, as stated in the following assertion.

Theorem 2: For any two optimal solutions x1,x2 ∈ Q of
problem (7) the equalities θk(f(x1)) = θk(f(x2)) ∀ k hold.

The most commonly used lexicographic models are based
on simple functions θ j(y) = y j thus introducing an hier-
archy of original outcomes. In such a case, according to
Theorem 2 the optimal solution is unique in the criterion
space.

Theorem 3: In the case of problem (7) with θ j (y) =
y j∀ j ∈ M, for any two optimal solutions x1,x2 ∈ Q the
equality f(x1) = f(x2) holds and this unique outcome vec-
tor is nondominated.

Applying to achievement vectors Θ(y) a linear cumulative
map one gets the cumulated achievements

θ̄k(y) =
k

∑
j=1

θ j(y) for k = 1,2, . . . ,m. (8)

Note that for any two vectors y′,y′′ ∈ Y one gets

Θ(y′) ≥lex Θ(y′′) ⇔ Θ̄(y′) ≥lex Θ̄(y′′). (9)

Hence, the following assertion is valid.

Theorem 4: A feasible vector x ∈ Q is an optimal solution
of problem (7), if and only if it is the optimal solution of
the cumulated lexicographic problem

lexmax {(θ̄1(f(x)), . . . , θ̄m(f(x))) : x ∈ Q}. (10)

The lexicographic order may also be used to construct re-
finements of various solution concepts [23]. We focus on
application of the lexicographic optimization to refine the
max-min solution concept according to the Rawlsian theory
of justice. Let 〈a〉 = (a〈1〉,a〈2〉, . . . ,a〈m〉) denote the vector
obtained from a by rearranging its components in the non-
decreasing order. That means a〈1〉 ≤ a〈2〉 ≤ . . . ≤ a〈m〉 and
there exists a permutation π of set M such that a〈i〉 = aπ(i)
for j = 1, . . . ,m. Comparing lexicographically such ordered
vectors 〈y〉 one gets the so-called leximin order. The gen-
eral problem considered in the balance of this paper de-
pends on searching for the solutions that are maximal

according to the leximin order. The problem called here-
after the max-min fair problem reads as follows:

P-MMF: Find x0 ∈ Q such that 〈f(x0)〉 ≥lex 〈f(x)〉 ∀ x ∈ Q.

This problem may also be viewed as a standard lexico-
graphic optimization (7) with the aggregation functions
θ j(y) = y〈 j〉:

lexmax {(θ1(f(x)), . . . ,θm(f(x))) : x ∈ Q}. (11)

Problem (11) represents the lexicographic max-min ap-
proach to the original multiple criteria problem (1). It is
a refinement (regularization) of the standard max-min opti-
mization, but this time, in addition to the smallest outcome,
we also maximize the second smallest outcome (provided
that the smallest one remains as large as possible), maxi-
mize the third smallest (provided that the two smallest re-
main as large as possible), and so on. Note that the lexico-
graphic maximization is not applied to any specific order
of the original criteria.
The lexicographic max-min is the only regularization ap-
proach of the max-min that satisfies the reduction (addi-
tion/deleting) principle [9]. Namely, if the individual out-
come does not distinguish two solutions, then it does not
affect the preference relation.
For the lexicographic max-min one may also take advantage
of Theorem 4. Applying the cumulative map (8) to ordered
outcomes θi(y) = y〈i〉 one gets θ̄k(y) = ∑k

i=1 y〈i〉 express-
ing, respectively: the worst (smallest) outcome, the total of
the two worst outcomes, the total of the three worst out-
comes, etc. Following Theorem 4, solution of the P-MMF
is equivalent to the lexicographic problem

lexmax {(θ̄1(y), . . . , θ̄m(y)) : y <
= f(x), x ∈ Q},

where θ̄k(y) = ∑k
j=1 y〈 j〉.

(12)

Note that

θ̄k(y) =
k

∑
j=1

y〈 j〉 = min
π∈Π

k

∑
j=1

yπ( j) ,

where the minimum is taken over all permutations of the
index set M. Hence, θ̄k(y) is a concave piecewise linear
function of y which, due to (12) guarantees several im-
portant properties of the lexicographic max-min solution
itself.
Recall, that every optimal solution of the lexicographic
max-min model is an efficient solution of the original mul-
tiple criteria optimization problem. Note that every lexi-
cographic max-min solution is also an optimal solution of
the standard max-min problem. Hence, by virtue of The-
orem 1, the lexicographic max-min model, generates ef-
ficient solutions satisfying the perfect equity of individual
outcomes, whenever such an efficient solution exists. When
there does not exist any efficient solution with perfectly
equal individual outcomes, then the lexicographic max-min
model generates another efficient solution but, due to con-
cave functions θ̄k(y), still providing equitability of individ-
ual outcomes with respect to the Pigou-Dalton principle of
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transfers [14]. The principle of transfers states, in the con-
text considered here, that a transfer of small amount from
an individual outcome to any relatively worse-off individ-
ual outcome results in a more preferred outcome vector.
Indeed, the following assertion is valid.

Theorem 5: For any outcome vector y ∈ Y , y j′ < y j′′ im-
plies

〈y+ εej′ − εej′′〉 >lex 〈y〉 ∀ 0 < ε < y j′′ − y j′ , (13)

where ej denotes the jth unit vector.

Proof: Let yε = y + εej′ − εej′′ for ε < y j′′ − y j′

and let y〈k′〉 = y j′ , y〈k′′〉 = y j′′ . Then, y j′ < y〈k′′〉 and

∑k
j=1 yε

〈 j〉 ≥∑k
j=1 y〈 j〉 for all k = 1,2, . . . ,m with at least one

strict inequality for some k′ ≤ k < k′′. Hence, 〈yε〉>lex 〈y〉,
due to (9).

Following Theorem 2, any two optimal solutions x1,x2 ∈ Q
of problem (11) result in the same ordered outcome vec-
tors 〈f(x1)〉 = 〈f(x2)〉. Hence, all the optimal solutions
have the same distributions of outcomes. Nevertheless, they
may generate different (differently ordered) outcome vec-
tors themselves. The unique outcome vector is guaranteed,
however, in the case of convex problems. It follows from
the alternative convex formulation (12) of the MMF prob-
lem.

Theorem 6: In the case of convex feasible set Q and con-
cave objective functions f j(x), for any two optimal solu-
tions x1,x2 ∈ Q of problem P-MMF the equality f(x1) =
f(x2) holds.

Proof: First of all, let us notice that problem P-MMF
is equivalent (in the criterion space) to the following:

lexmax {〈y〉 : y j ≤ f j(x) ∀ j, x ∈ Q} (14)

and we need to prove that the problem has a unique opti-
mal solution y ∈ Y . Due to the convexity assumptions the
attainable set Y is convex. Let, y1 6= y2 ∈Y be optimal solu-
tions of (14), thus 〈y1〉= 〈y2〉. Define yε = (1−ε)y1+εy2

for some positive ε satisfying

0 < ε < min
y1

j′
6=y1

j′′

|y1
j′ − y1

j′′ |/ max
y1

j′
6=y1

j′′

|y1
j′ − y1

j′′ |.

Due to the bound on ε , there exists a permutation π order-
ing both y1 and yε , i.e., y1

π( j) ≤ y1
π( j+1) and yε

π( j) ≤ yε
π( j+1)

for all j = 1, . . . ,m−1. Further, identifying the index jo for
which y1

jo is the smallest value y1
j such that y1

j 6= y2
j one gets

yε
π( j) ≥ y1

π( j) for j < jo and yε
π( jo) > y1

π( jo) which contradicts

optimality of y1.

The leximin order cannot be expressed in terms of any ag-
gregation function. Nevertheless, it is a limiting case of
the order (6) for the ordered weighted aggregation func-
tions θ(y) = ∑m

j=1 w jy〈 j〉 defined by decreasing sequences
of positive weights w j with differences tending to the in-
finity [36, 38].

3. Telecommunications network design
examples

Below we shall give three examples showing how the MMF
concept can be used in formulations of multi-commodity
network flow problems related to telecommunications ap-
plications.

3.1. Routing design for networks with elastic traffic

The first example is a problem of finding flows in a network
with given link capacities so as to obtain the MMF distri-
bution of flow sizes. This type of problem is applicable to
networks carrying the so-called elastic traffic, which means
that traffic streams can adapt their intensity to the available
capacity of the network [28].

Problem 1: Routing optimization for MMF distribution of

demand volumes

indices
d = 1,2, . . . ,D demands (pairs of nodes)
p = 1,2, . . . ,Pd allowable paths for demand d
e = 1,2, . . . ,E links

constants
δed p equals 1 if link e belongs to path p

of demand d; 0, otherwise
ce capacity of link e

variables
xd p flow (bandwidth) allocated to path p

of demand d (non-negative continuous)
Xd total flow (bandwidth) allocated

to demand d (non-negative continuous),
X = (X1,X2, . . . ,XD)

objective

lexmax (X〈1〉,X〈2〉, . . . ,X〈D〉) (15a)

constraints

∑p xd p = Xd d = 1,2, . . . ,D, (15b)

∑d ∑p δed pxd p ≤ ce e = 1,2, . . . ,E, (15c)

xd p ≥ 0 d = 1,2, . . . ,D p = 1,2, . . . ,Pd . (15d)

In the above formulation, Eq. (15b) defines the total flow,
Xd , allocated to demand d, and constraint (15c) assures
that the link load (left-hand side) does not exceed the link
capacity. A solution of Problem 1 for an example network
is discussed in Appendix A.

3.2. Restoration design for networks with elastic traffic

The second example corresponds to the problem of design-
ing an optimal strategy of elastic traffic flows restoration in
case of network failures ([27, Chapter 13]). It is assumed
that a set of network failure situations have been identi-
fied. The adopted failure model is such that a failure may
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reduce the capacity of one or more network links. The de-
sign should determine optimal capacities of links and for
each failure situation the optimal size and routing of every
traffic flow so as to obtain the MMF distribution of revenue
for all network failure situations. It is assumed that the rev-
enue generated by a single traffic flow is proportional to the
logarithm of this flow’s size.

Problem 2: Flow restoration optimization for MMF distri-

bution of revenues

indices
d = 1,2, . . . ,D demands
p = 1,2, . . . ,Pd allowable paths for demand d
e = 1,2, . . . ,E links
s = 1,2, . . . ,S states (including normal state)

constants
δed equals 1 if link e belongs to the fixed path

of demand d; 0, otherwise
rds revenue from demand d in situation s
ξe unit cost of link e
αes fractional availability coefficient of link e

in situation s (0≤ αes ≤ 1)
B assumed budget

variables
ye capacity of link e (non-negative continuous)
xd ps flow allocated to path p of demand d in situa-

tion s (non-negative continuous)
Xds total flow allocated to demand d in situation s

(non-negative continuous)
Rs logarithmic revenue in situation s (continuous),

R = (R1,R2, . . . ,RS)
objective

lexmax (R〈1〉,R〈2〉, . . . ,R〈S〉) (16a)

constraints

Xds = ∑p xd ps d = 1, . . . ,D; s = 1, . . . ,S, (16b)

Rs = ∑d rds lgXds s = 1, . . . ,S, (16c)

∑d ∑p δed pxd ps ≤ αesye e = 1, . . . ,E, (16d)

∑e ξeye ≤ B, (16e)

xd ps ≥ 0 (16f)

d = 1, . . . ,D; p = 1, . . . ,Pd ; s = 1, . . . ,S.

3.3. Capacity protection design

The last example corresponds to the problem of designing
the protection of network links’ capacity [20]. It is assumed
that the capacity of network links and the size and routing
of all network flows are given. The design should deter-
mine how much capacity of each link should be freed and
reserved so in case of any single-link failure the capacity
of the failed link could be restored using the reserved pro-
tection capacity. In order to free the capacity of links the
size of traffic flows should be reduced in such a way so as
to obtain the MMF distribution of traffic flow sizes.

Problem 3: Protection capacity optimization for MMF dis-

tribution of flow sizes

indices
d = 1,2, ...,D demands
p = 1,2, ...,Pd allowable paths for demand d
e, ℓ = 1,2, ...,E links
q = 1,2, ...,Qℓ candidate restoration paths for link ℓ

constants
hd “reference” volume of demand d
δed p equals 1 if link e belongs to path p realizing

demand d; 0, otherwise
ce total capacity of link e
βℓeq equals 1 if link ℓ belongs to path q restoring

link e; 0, otherwise
variables

ye resulting normal capacity of link e
xd p normal flow realizing demand d on path p
we protection capacity of link e
zeq flow restoring capacity of link e on path q
Xd normalized realized demand volume for de-

mand d, X = (X1,X2, . . . ,XD)
objective

lexmax (X〈1〉,X〈2〉, . . . ,X〈D〉) (17a)

constraints

Xd = ∑p xd p/hd d = 1, . . . ,D , (17b)

we +ue ≤ ce e = 1, . . . ,E , (17c)

∑d ∑p δed pxd p ≤ ye, e = 1, . . . ,E , (17d)

ye ≤ ∑q zeq e = 1, . . . ,E , (17e)

∑q βℓeqzeq ≤ wℓ ℓ,e = 1, . . . ,E; ℓ 6= e , (17f)

xd p ≥ 0 d = 1, . . . ,D p = 1, . . . ,Pd . (17g)

Note that the lexicographic max-min solution assures that
all demand volumes will be in the worst case decreased
by the same optimal proportion r∗, since in the optimal
solution ∑p x∗d p ≥ r∗hd , d = 1,2, ...,D, for some number r∗,
such that ∑p x∗d p = r∗hd for some d.

3.4. Non-convex extensions of the example problems

All three problems presented in the previous subsections
have convex sets of feasible solutions. As we will see in
Section 4, this property allows for efficient solution algo-
rithms of the introduced problems, but, unfortunately, it is
not always present in telecommunications problems. For
instance, we may require that the demand volumes are re-
alized only on single paths and that the choice of these
single paths is subject to optimization. This requirement
usually leads to mixed-integer programme (MIP) formula-
tions. In particular, Problem 1 in the single-path version
requires additional multiple choice constraints to enforce
nonbifurcated flows. Assuming existence of some constants
Ud upper bounding the largest possible total flows Xd , this
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can be implemented with additional binary (flow assigne-
ment) variables ud p used to limit the number of positive
flows xd p with constraints:

xd p ≤Udud p d = 1, . . . ,D; p = 1, . . . ,Pd , (18a)

∑
p

ud p = 1 d = 1, . . . ,D, (18b)

ud p ∈ {0,1} d = 1, . . . ,D; p = 1, . . . ,Pd . (18c)

In fact, as demonstrated in [13], such a modification makes
Problem 1 NP-complete. The same requirement can be
introduced to Problems 2 and 3 as well.
Another requirement leading to non-convex MIP problems
is the modularity of the link capacity, which means that
link capacities should be multiples of a given module C.
Then, capacity variables become non-negative integers and
respective constraints change. For example, for Problem 2
variables ye are non-negative integers and constraints (16d)
take the form

∑
d

∑
p

δed pxd ps ≤ αesCye, e = 1, . . . ,E. (19)

Certainly, the capacity variables in Problem 3 can also be
made integral.

4. MMF solution algorithms

4.1. Sequential max-min algorithms for convex problems

The (point-wise) ordering of outcomes causes that the lexi-
cographic max-min problem (11) is, in general, hard to im-
plement. Note that the quantity y〈1〉 representing the worst
outcome can be easily computed directly by the maximiza-
tion:

y〈1〉 = max r1 subject to r1 ≤ y j for j = 1, . . . ,m.

Similar simple formula does not exist for the further or-
dered outcomes y〈k〉. Nevertheless, for convex problems it
is possible to use iterative algorithms for finding the con-
secutive values of the (unknown) optimal unique vector
T0 = (T 0

1 ,T 0
2 , . . . ,T 0

m) = 〈f(x0)〉 by solving a sequence of
properly defined max-min problems. Such algorithms are
described below.
Suppose B is a subset of the index set M, B ⊆ M, and let
tB = (t j : j ∈ B) be a |B|-vector. Also, let B′ denote the
set complementary to B : B′ = M\B. For given B and tB

we define the following convex mathematical programming
problem in variables x and τ:

P(B,tB):

maximize τ , (20a)

subject to f j(x) ≥ τ j ∈ B′, (20b)

f j(x) ≥ tB
j j ∈ B, (20c)

x ∈ X. (20d)

It is clear that the solution τ0 of the convex problem P( /0, /0)
(defined by (20) for empty set B and empty sequence tB)

will yield the smallest value of T0, i.e., the value T 0
1 (and

possibly some other consecutive entries of T0). This obser-
vation suggests the following algorithm for solving problem
P-MMF specified by (11).

Algorithm 2: Straightforward algorithm for solving
problem P-MMF

Step 0: Put B := /0 (empty set) and tB := /0 (empty se-
quence).

Step 1: If B = M then stop (〈tB〉 is the optimal solution
of problem P-MMF, i.e., 〈tB〉= T0). Else, solve
programme P(B, tB) and denote the resulting
optimal solution by (x0,τ0).

Step 2: For each index k ∈ B′ such that fk(x0) = τ0

solve the following test problem T(B, tB,τ0,k):

max, fk(x) , (21a)

s.t. f j(x) ≥ τ0 j ∈ B′\{k} , (21b)

f j(x) ≥ tB
j j ∈ B , (21c)

x ∈ X. (21d)

If for optimal x1, while solving test
T(B, tB,τ0,k) we have fk(x1) = τ0, then
we put B := B∪{k} and tk := τ0.

Step 3: Go to Step 1.

It can happen that as a result of solving the test in Step 2
for some index k ∈ B′, it will turn out that fl(x1) > τ0

for some other, not yet tested, index l ∈ B′ (l 6= k). In
such an (advantageous) case, the objective function with
index l does not have to be tested, as its value can be fur-
ther increased without disturbing the maximal values tB.
Observe that set B is the current set of blocking indices,
i.e., the indices j for which the value f j(x0) is equal
to tB

j in every optimal solution of problem P-MMF. Note
also, that although the tests in Step 2 are performed sepa-
rately for individual indices j ∈ B′, the values of objective
functions f j for the indices j ∈ B′, where set B′ is results
from Step 2, can be simultaneously increased above the
value of τ0 in the next execution of Step 1. This follows
from convexity of the set defined by constraints (21b–d):
if f j(x j) = a j > τ0 and x j satisfies (21b–d), then a convex
combination of the points x j, x=∑ j∈B′ α jx j (∑ j∈B′ α j =1,

α j > 0, j ∈ B′) also satisfies (21b–d), and f j(x) > τ0 for
all j ∈ B′.
Another version of Algorithm 2 may be more efficient, pro-
vided that the complexity of problems (20) and (21) is sim-
ilar.
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Algorithm 3: Algorithm for solving problem P-MMF

Step 0: Put B := /0 and tB := /0.

Step 1: If B = M then stop (〈tB〉 is the optimal so-
lution of problem P-MMF, i.e., 〈tB〉 = T0).
Else, solve programme P(B, tB) and denote
the resulting optimal solution by (x0,τ0).

Step 2: Start solving the test problem T(B, tB,τ0,k)
for all indices k ∈ B′ such that fk(x0) = τ0.
When the first k ∈ B′ with fk(x1) = τ0 is de-
tected, then put B := B∪{k} and tk := τ0, and
go to Step 3.

Step 3: Go to Step 1.

The idea behind the modification in Algorithm 3 is that
in total it may involve solving less instances of problems
P(B, tB) and T(B, tB,τ0,k) than Algorithm 2. If at opti-
mum x0 all values f j(x0) are the same (equal to 0), then
Algorithm 2 will require solving m + 1 problems (prob-
lem P( /0, /0) and m tests T( /0, /0,τ0,k) for k = 1,2, . . . ,m),
whilst Algorithm 3 will require solving 2m + 1 problems
(problem P( /0, /0), m tests T(B, tB,τ0,k) and m problems
P(B, tB)). Hence, in this case, Algorithm 3 requires solv-
ing O(m) more problems than Algorithm 2. Now let us
consider a somewhat opposite case where all values f j(x0)
are different. Additionally, assume that all optimal solu-
tions x of the consecutively solved problems P(B, tB) and
T(B, tB,τ0,k) yield the same values f j(x) for j ∈ B′. In this
case Algorithm 3 will require solving O(m2/4) problems,
while Algorithm 2 – O(m2/2) problems. This means that
Algorithm 2 requires solving O(m2/4) more problems than
Algorithm 3; this is a substantial difference.
Both algorithms presented above can be time consum-
ing due to excessive number of problems P(B, tB) and
T(B, tB,τ0,k) that may have to be solved in the iteration
process. Therefore, below we give an alternative algo-
rithm which is very fast provided that dual optimal variables
problems P(B, tB) can be effectively computed (this is for
instance the case for linear programmes and the simplex
algorithm).
Suppose λ = (λ j) j∈B′ denotes the vector of dual variables
(multipliers) associated with constraints (20b). It leads to
the following Lagrangian function for problem P(B, tB):

L(x;τ;λ ) = −τ +∑ j∈B′ λ j(τ − f j(x))

= (∑ j∈B′ λ j −1)τ −∑ j∈B′ λ j f j(x).
(22)

The domain of Lagrangian (22) is defined by

x ∈ Y , (23a)

−∞ < τ < +∞ , (23b)

λ ≥ 0, (23c)

where Y is determined by constraints (20c–d). Hence, the
dual function is formally defined as

W (λ ) = minτ,x∈Y L(x,τ;λ ) λ ≥ 0 (24)

and the dual problem reads:

maximizeW (λ ) over λ ≥ 0. (25)

The following theorem can be proved [27].

Theorem 7: Let λ 0 be the vector of optimal dual variables
solving the dual problem (25). Then

1) ∑ j∈B′ λ 0
j = 1, (26)

2) if λ 0
j > 0 for some j ∈ B′, then f j(x) cannot be im-

proved, i.e., f j(x0) = τ0 for every optimal primal so-
lution (x0,τ0) of (20).

Note that in general the inverse of (2) in Theorem 7 does
not hold: λ 0

j = 0 does not necessarily imply that f j(x) can
be improved (for an example see [27, 28]). In fact, it can be
proved [27, Chapter 13] that the inverse implication holds
if and only if set B is regular (set B is called regular if for
any non-empty proper subset G of B, in the modified for-
mulation P(B\G, tB\G) the value of fk(x) can be improved
for at least one of the indices k ∈ B\G).
Whether or not the consecutive sets B are regular, the fol-
lowing algorithm solves problem P-MMF.

Algorithm 4: Algorithm for solving problem P-MMF
based on dual variables

Step 0: Put B := /0 and tB := /0.

Step 1: If B = M then stop (〈tB〉 is the optimal so-
lution of problem P-MMF, i.e., 〈tB〉 = T0).
Else, solve programme P(B, tB) and denote
the resulting optimal solution by (x0,τ0;λ 0).

Step 2: Put B := B∪{ j ∈ B′ : λ 0
j > 0}.

Step 3: Go to Step 1.

Observe that if for some j ∈ B′ with λ 0
j = 0, f j(x) cannot

be further improved, then in Step 1 the value of τ0 will not
be improved; still at least one such index j will be detected
(due to property (5)) and included into set B in the next
execution of Step 2. The regularity of set B simply ensures
that in each iteration at least one f j(x) ( j ∈ B′) will be
improved.
In the case of LP problems, the dual quantities used
in Algorithm 4 can be obtained directly from the sim-
plex tableau. Indeed, it was a basis of early implemen-
tations of the lexicographic max-min solution for LP prob-
lems [1, 2, 12].
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4.2. Conditional means

The sequential max-min algorithms can be applied only to
convex problems, because, in general, it is likely that there
does not exist a blocking index set B allowing for iterative
processing. This can be illustrated with the following small
example. Problem

lexmax{〈(x1+2x2,3x1+x2)〉 : x1+x2 = 1, x1,x2 ∈ {0,1}}

has two feasible vectors x1 = (1,0), x2 = (0,1) and corre-
sponding outcomes y1 = (1,3), y2 = (2,1). Obviously, x1 is
the MMF optimal solution as 〈(1,3)〉>lex 〈(2,1)〉. One can
easily verify that both feasible solutions are optimal for
max-min problem

max{min{x1+2x2,3x1+x2} : x1+x2 = 1, x1,x2 ∈ {0,1}}

but neither f1 nor f2 is a blocking outcome allowing to
define the second level max-min optimization problem to
maximize the second worst outcome. For the same rea-
son, the sequential algorithm may fail for the single-path
version of the routing optimization for the MMF distribu-
tion of demand volumes and other discrete models (refer to
Subsection 3.4).
Following Yager [37], a direct, although requiring the use
of integer variables, formula can be given for any y〈k〉.
Namely, for any k = 1,2, . . . ,m the following formula is
valid:

y〈k〉 = max rk

s.t.
rk − y j ≤Czk j, zk j ∈ {0,1} j = 1, . . . ,m

m

∑
j=1

zk j ≤ k−1,

(27)

where C is a sufficiently large constant (larger than any pos-
sible difference between various individual outcomes y j)
which allows us to enforce inequality rk ≤ y j for zk j = 0
while ignoring it for zk j = 1. Note that for k = 1 all binary
variables z1 j are forced to 0 thus reducing the optimiza-
tion in this case to the standard LP model. However, for
any other k > 1 all m binary variables zk j are an impor-
tant part of the model. Nevertheless, with the use of auxil-
iary integer variables, any MMF problem (either convex or
non-convex) can be formulated as the standard lexico-
graphic maximization with directly defined achievement
functions:

lexmax (r1,r2, . . . ,rm) (28a)

s.t.

x ∈ Q (28b)

rk − f j(x) ≤Czk j, zk j j,k = 1, . . . ,m (28c)

∈ {0,1} j,k = 1, . . . ,m (28d)
m

∑
j=1

zk j ≤ k−1 k = 1, . . . ,m. (28e)

Recall that one may take advantage of the formulation (12)
with cumulated criteria θ̄k(y) = ∑k

i=1 y〈i〉 expressing, re-
spectively: the worst (smallest) outcome, the total of

the two worst outcomes, the total of the three worst out-
comes, etc. When normalized by k the quantities µk(y) =
θ̄k(y)/k can be interpreted as the worst conditional means
[24]. The optimization formula (27) for y〈k〉 can easily be
extended to define θ̄k(y). Namely, for any k = 1,2, . . . ,m
the following formula is valid:

θ̄k(y) = max krk −
m

∑
j=1

dk j

s.t.
rk − y j ≤ dk j, dk j ≥ 0 j = 1, . . . ,m
dk j ≤Czk j, zk j ∈ {0,1} j = 1, . . . ,m

m

∑
j=1

zk j ≤ k−1,

(29)

where C is a sufficiently large constant. However, the opti-
mization problem defining the cumulated ordered outcome
can be dramatically simplified since all its binary variables
(and the related constraints) turn out to be redundant. First
let us notice that for any given vector y ∈ ℜm, the cumu-
lated ordered value θ̄k(y) can be found as the optimal value
of the following LP problem:

θ̄k(y) = min
m

∑
j=1

y juk j

s.t.
∑m

j=1 uk j = k, 0≤ uk j ≤ 1 j = 1, . . . ,m.
(30)

The above problem is an LP for a given outcome vector y
while it becomes nonlinear for y being a variable. This
difficulty can be overcome by taking advantage of the LP
dual to (30) as shown in the following assertion.

Theorem 8: For any given vector y ∈ ℜm, the cumulated
ordered coefficient θ̄k(y) can be found as the optimal value
of the following LP problem:

θ̄k(y) = max krk −
m

∑
j=1

dk j

s.t.
rk − y j ≤ dk j, dk j ≥ 0 j = 1, . . . ,m.

(31)

Proof: In order to prove the theorem it is enough
to notice that problem (31) is the LP dual of problem (30)
with variable rk corresponding to the equation ∑m

j=1 uk j = k
and variables dk j corresponding to upper bounds on uk j.

It follows from Theorem 8 that

θ̄k(f(x)) = max{ krk −∑m
j=1 dk j : x ∈ Q;

rk − f j(x) ≤ dk j, dk j ≥ 0 j ∈ M}

or in a more compact form θ̄k(f(x)) = max {krk −

∑m
j=1 ( f j(x)−rk)+ : x∈Q } where (.)+ denotes the nonneg-

ative part of a number and rk is an auxiliary (unbounded)
variable. The latter, with the necessary adaptation to the
minimized outcomes in location problems, is equivalent to
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the computational formulation of the k–centrum model in-
troduced in [26]. Hence, Theorem 8 provides an alternative
proof of that formulation.
Due to Theorem 4, the lexicographic max-min problem (11)
is equivalent to the lexicographic maximization of condi-
tional means

lexmax {(µ1(f(x)),µ2(f(x)), . . . ,µm(f(x))) : x ∈ Q}.

Following Theorem 8, the above leads us to a standard
lexicographic optimization problem with predefined linear
criteria:

lexmax (r1−
m

∑
j=1

d1 j, . . . ,rm −
1
m

m

∑
j=1

dm j)

s.t.
x ∈ Q
dk j ≥ rk − f j(x) j,k = 1, . . . ,m
dk j ≥ 0 j,k = 1, . . . ,m.

(32)

Note that this direct lexicographic formulation remains
valid for nonconvex (e.g., discrete) feasible sets Q, where
the standard sequential approaches [16, 17] are not appli-
cable [21].
Model (32) preserves the problem convexity when the orig-
inal problem is defined with convex feasible set Q and con-
cave objective functions f j. In particular, for an LP original
problem it remains within the LP class while introducing
m2 + m auxiliary variables and m2 constraints. Thus, for
many problems with not too large number of criteria m,
problem (32) can easily be solved directly. Although, in
general, for convex problems such an approach seems to
be less efficient than the sequential algorithms discussed in
the previous subsection. The latter may require m iterative
steps only in the worst case (only one blocking variable at
each step), while typically there are more than two block-
ing variables identified at each step which reduces signif-
icantly the number of steps. The direct model (32) es-
sentially requires the sequential lexicographic Algorithm 1
with m steps.
Further research on the increase of computational efficiency
of model (32) seems to be very promising. Note that all lex-
icographic criteria of this problem express the conditional
means which are monotonic with respect to increasing k.
While solving the lexicographic problem with the standard
sequential Algorithm 1, one needs to solve at Step 2 the
following maximization problem:

max {τk : τk ≤ r−w
m

∑
j=1

d j; µl(f(x)) ≥ τ0
l ∀l < k;

x ∈ Q; r− f j(x) ≤ d j, d j ≥ 0 ∀ j} ,

where w = 1/k. It may occur that the optimal solution of
the above problem remains also optimal for smaller coeffi-
cients w = 1/κ thus defining conditional means for κ > k.
In such a case, one may advance the iterative process to
κ +1 instead of k +1. Hence, some parametric optimiza-
tion techniques may allow us to reduce the number of it-
erations to the same level as in the sequential max-min
algorithms.

Note that model (32) offers also a possibility to build some
approximations to the strict MMF solution as it allows us
to build lexicographic problems taking into account only
a selected grid of indices k. In particular, the so-called aug-
mented max-min solution concept, commonly used in the
multiple criteria optimization [22, 35], is such an approxi-
mation, although very rough as based only on µ1 and µk

lexmax{(r1,
1
m

m

∑
j=1

f j(x)) : r1 ≤ f j(x) j = 1, . . . ,m,

x ∈ Q}.

4.3. Distribution approach

For some specific classes of discrete, or rather combinato-
rial, optimization problems, one may take advantage of the
finiteness of the set of all possible values of functions f j

on the finite set of feasible solutions. The ordered out-
come vectors may be treated as describing a distribution
of outcomes generated by a given decision x. In the case
when there exists a finite set of all possible outcomes of
the individual objective functions, we can directly describe
the distribution of outcomes with frequencies of outcomes.
Let V = {v1,v2, . . . ,vr} (where v1 < v2 < · · · < vr) denote
the set of all attainable outcomes (all possible values of
the individual objective functions f j for x ∈ Q). We intro-
duce integer functions hk(y) (k = 1, . . . ,r) expressing the
number of values vk in the outcome vector y. Having de-
fined functions hk we can introduce cumulative distribution
functions:

h̄k(y) =
k

∑
l=1

hl(y) , k = 1, . . . ,r. (33)

Function h̄k expresses the number of outcomes smaller
or equal to vk. Since we want to maximize all the out-
comes, we are interested in the minimization of all func-
tions h̄k. Indeed, the following assertion is valid [22].
For outcome vectors y′,y′′ ∈ V m, 〈y′〉 ≥ 〈y′′〉 if and only
if h̄k(y′) ≤ h̄k(y′′) for all k = 1, . . . ,r. This equivalence
allows to express the lexicographic max-min solution con-
cept for problem (1) in terms of the standard lexicographic
minimization problem with objectives h̄(f(x)):

lexmin {(h̄1(f(x)), . . . , h̄r(f(x))) : x ∈ Q}. (34)

Theorem 9: A feasible solution x∈Q is an optimal solution
of the P-MMF problem, if and only if it is an optimal
solution of the lexicographic problem (34).
The quantity h̄k(y) can be computed directly by the mini-
mization:

h̄k(y) = min
m

∑
j=1

zk j

s.t.
vk+1− y j ≤Czk j, zk j ∈ {0,1} j = 1, . . . ,m,

where C is a sufficiently large constant. Note that h̄r(y)= m
for any y which means that the rth criterion is always con-
stant and therefore redundant in (34). Hence, the lexico-
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graphic problem (34) can be formulated as the following
mixed integer problem:

lexmin

[ m

∑
j=1

z1 j,
m

∑
j=1

z2 j, . . . ,
m

∑
j=1

zr−1, j

]

s.t.
vk+1− f j(x) ≤Czk j j = 1, . . . ,m, k = 1, . . . ,r−1,
zk j ∈ {0,1} j = 1, . . . ,m, k = 1, . . . ,r−1,
x ∈ Q.

(35)

Krarup and Pruzan [15] have shown that, in the case of
discrete location problems, the use of the minisum so-
lution concept with the outcomes raised to a sufficiently
large power is equivalent to the use of the minimax solu-
tion concept. Formulation (34) allows us to extend such
an approach to the lexicographic max-min solution con-
cept. Note that the achievements functions in (34) can be
rescaled with corresponding values vk+1 − vk. When the
differences among outcome values are large enough then
the lexicographic minimization corresponds to the one-level
optimization of the total of achievements which is equiva-
lent to minimization of the sum of the original outcomes. In
general, as shown by Burkard and Rendl [4], there is a pos-
sibility to replace then the lexicographic max-min objective
function with an equivalent linear function on rescaled out-
comes. Algorithms developed in [4, 5] take advantage of
finiteness of the set of outcome values and they depend
on making (explicitly or implicitly) differences among the
outcomes larger (without changing their order) which does
not affect the lexicographically maximal solutions of prob-
lem (11). When the differences are large enough the op-
timal solution of the maxisum problem is also the lexico-
graphic max-min solution. In general, an unrealistically
complicated scaling function may be necessary to gener-
ate large enough differences among different but very close
outcomes. Therefore, the outcomes should be mapped first
on the set of integer variables (numbered) to normalize the
minimum difference, like in [4, 5] approaches. All these
transformations are eligible in the case of finite outcome
set. Nevertheless, while solving practical problems, large
differences among coefficients may cause serious computa-
tional problems. Therefore, such approaches are less useful
for large scale problems typically arriving in telecommuni-
cations network design.
Taking advantage of possible weighting and cumulating
achievements in lexicographic optimization, one may elim-
inate auxiliary integer variables from the achievement func-
tions. For this purpose we weight and cumulate vector h̄(y)
to get ĥ1(y) = 0 and:

ĥk(y) =
k−1

∑
l=1

(vl+1− vl)h̄l(y) k = 2, . . . ,r. (36)

Due to Theorem 4 and positive differences vl+1− vl > 0,
the lexicographic minimization problem (34) is equivalent
to the lexicographic problem with objectives ĥ(f(x)):

lexmin {(ĥ1(f(x)), . . . , ĥr(f(x))) : x ∈ Q} (37)

which leads us to the following assertion.

Theorem 10: A feasible solution x ∈ Q is an optimal solu-
tion of the P-MMF problem, if and only if it is an optimal
solution of the lexicographic problem (37).

Actually, vector function ĥ(y) provides a unique descrip-
tion of the distribution of coefficients of vector y, i.e., for
any y′, y′′ ∈ V m one gets: ĥ(y′) = ĥ(y′′) ⇔ 〈y′〉 = 〈y′′〉.
Moreover, ĥ(y′)≤ ĥ(y′′) if and only if Θ̄(y′)≥ Θ̄(y′′) [22].

Note that ĥ1(y) = 0 for any y which means that the first
criterion is constant and redundant in problem (37). More-
over, putting (33) into (36) allows us to express all achieve-
ment functions ĥk(y) as a piece wise linear functions
of y:

ĥk(y) =
m

∑
j=1

(vk − y j)+ =
m

∑
j=1

max{vk − y j,0}

k = 1, . . . ,r.

(38)

Hence, the quantity ĥk(y) can be computed directly by the
following minimization:

ĥk(y) = min
m

∑
j=1

tk j

s.t.

vk − y j ≤ tk j, tk j ≥ 0 j = 1, . . . ,m.

(39)

Therefore, the entire lexicographic model (37) can be for-
mulated as follows:

lexmin

[

m

∑
j=1

t2 j,
m

∑
j=1

t3 j, . . . ,
m

∑
j=1

tr j

]

s.t.

vk − f j(x) ≤ tk j, tk j ≥ 0 j = 1, . . . ,m, k = 2, . . . ,r

x ∈ Q. (40)

Note that the above formulation, unlike the problem (35),
does not use integer variables and can be considered as
an LP modification of the original multiple criteria prob-
lem (1). Thus, this model preserves the problem’s con-
vexity when the original problem is defined with a convex
feasible set Q and a concave objective functions f j. The
size of problem (40) depends on the number of different
outcome values. Thus, for many problems with not too
large number of outcome values, the problem can easily
be solved directly and even for convex problems such an
approach may be more efficient than the sequential algo-
rithms discussed in the previous subsection. Note that in
many problems of telecommunications network design, the
objective functions express the quality of service and one
can easily consider a limited finite scale (grid) of the corre-
sponding outcome values. Similarly, in the capacity protec-
tion design (Subsection 3.3), one may focus on a finite grid
of demand volumes. One may also notice that model (40)
opens a way for the fuzzy representation of quality mea-
sures within the MMF problems.
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5. Concluding remarks
Today, the major objective of telecommunications network
design for Internet services is to maximize service data
flows and provide fair treatment of all services. Fair treat-
ment of services can be formalized through the MMF solu-
tion concept, which assumes that the worst service perfor-
mance is maximized and the solution is additionally regu-
larized with the lexicographic maximization of the second
worst performance, the third one, etc. We have argued that
the MMF solution concept is tightly related to the Rawl-
sian principle of justice and is equivalent the lexicographic
max-min concept.
We have shown that with respect to telecommunications
networks carrying the so-called elastic traffic, the problems
of routing design, restoration design and protection capac-
ity design are examples of important design problems that
can be formulated with the use of the MMF notion to ex-
press design objectives. We have presented and evaluated
several general efficient sequential algorithms that can be
used to solve the basic variants of these problems as well
as many other MMF problems. These algorithms are based
on the idea to solve a sequence of properly defined max-
min subproblems. The algorithms differ with respect to the
strategy of choosing this sequence. We have shown that the
efficiency of different strategies depends on the distribution
of outcome values of the optimal solution to the original
problem. Since the algorithms can still be time-consuming
due to excessive number of subproblems that have to be
solved in the iteration process, the values of subproblems’
dual variables can be used to considerably reduce the num-
ber of solved subproblems. In the case of LP problem
formulations the values of dual variables can be obtained
directly from the simplex tableau.
Unfortunately, sequential algorithms are only applicable to
convex problems. Hence if network design problems are
augmented with the requirements that data flows are to be
routed along single paths or that link capacity is modular,
these algorithms cannot be applied any more. However, we
have shown that the original problem of lexicographic max-
imization of the solution vector can be replaced with the
lexicographic minimization of the vector that describes the
distribution of outcome values, which, fortunately enough,
is convex as long as an original problem is defined with
a convex feasible set Q and a concave objective functions f j.
The complexity of the transformed problem is directly re-
lated to the number of different outcome values. As far
as telecommunications network design is concerned, this
number can be pretty small, for example if the objective
functions express the quality of service. Therefore, further
research on application of distribution approach to various
classes of telecommunications MMF problems seems to be
very promising.

Appendix A. Numerical example
In this appendix we present a numerical example of Prob-
lem 1 (Subsection 3.1). The structure of the considered net-

work is shown in Fig. 1; ce denotes the capacity of link e.
We assume that the set of demands corresponds to the set
of all pairs of nodes.

Fig. 1. 16-node square network.

The results of applying Algorithm 4 (Subsection 4.1) to
Problem 1 are presented in Table 1. The table contains
information pertaining to consecutive iterations of the al-

Table 1
Consecutive values of τ0

n and number of blocked demands
in MMF allocation procedure

Iteration n Value τ0
n Blocked demands

1 5.286 63

2 6.625 8

3 7.013 28

4 10.214 8

5 14.606 4

6 16.115 1

7 25.362 1

8 29.908 2

9 30.962 1

10 35.093 2

11 49.288 1

12 82.145 1

gorithm. The information includes the number of demands
blocked in an iteration and their flow size. To effectively
solve the problem we applied a path (column) generation
technique [27, Subsection 8.2.1] allowing for problem de-
composition. The overall number of paths used in each
iteration is presented in Fig. 2. The LP subproblems were
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Fig. 2. Number of problem columns in function of MMF algo-
rithm iterations.

solved with the use of the CPLEX 9.0 optimization pack-
age. Solving the problem on a PC-class computer equipped
with a 2.4 GHz P4 HT processor required 0.2 s of the pro-
cessor time, of which only 0.03 s in total was spent on
solving the LP subproblems.
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