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Abstract—Recently, much interest has been directed towards

software defined radios and embedded intelligence in telecom-

munication devices. However, no fundamental basis for cog-

nitive radios has ever been proposed. In this paper, we intro-

duce a fundamental vision of cognitive radios from a physical

layer viewpoint. Specifically, our motivation in this work is

to embed human-like intelligence in mobile wireless devices,

following the three century-old work on Bayesian probability

theory, the maximum entropy principle and minimal proba-

bility update. This allows us to partially answer such questions

as, what are the signal detection capabilities of a wireless de-

vice, when facing a situation in which most parameters are

missing, how to react and so on. As an introductory example,

we will present previous works from the same authors follow-

ing the cognitive framework, and especially the multi-antenna

channel modeling and signal sensing.

Keywords— Bayesian inference, cognitive radio, maximum en-

tropy.

1. Introduction

In 1948, Claude Shannon introduced a mathematical theory

of communications [1], allowing two to three generations

of research to design increasingly sophisticated telecommu-

nication tools, whose purpose is to constantly increase the

achievable transmission rate over various communication

channels. One of the key conclusions of Shannon was to

show that a linear increase in the transmission bandwidths

is expected to provide linear growth in the channel trans-

mission capacity, while linear transmit power increase only

provide sublinear capacity growth.

As a consequence, the last decades of research in telecom-

munications led to a situation in which the available trans-

mission bandwidth became dramatically scarce and can

only be acquired by service providers at extraordinarily high

prices. Then, in the end of the nineties, the conclusions

of Foschini [2] and Telatar [3] on their work on multi-

ple antenna (MIMO) systems came as a salvation: when

increasing the number of embedded antennas in both trans-

mit and receive devices, a potential linear growth (with

the number of antennas) in capacity was expected. Since

the exploitation of the space dimension can come virtu-

ally at a zero cost compared to the exploitation of the fre-

quency dimension, these stunning results rapidly generated

lots of research work in the early years of the twenty-first

century.

However, practical applications of multiple antenna systems

took a long time to be put in place, when it was clearly

realized that the exceptional predicted capacity gain could

only come at a very strong signal to noise ratio (SNR)

and for low correlated channels; for instance, line of sight

components in a transmission almost completely annihilates

the gain of multiple antenna systems. However, up to this

point in the evolution of wireless devices, the initial result

from Shannon was still applicable to the most advanced

technologies.

After the MIMO delusion, Joseph Mitola [4] realized that

a new virtual dimension could be exploited to increase the

achievable transmission rate: making the radio smarter.

The basic insight of Mitola was to observe that most al-

located bandwidth is not efficiently used in the sense that,

most of the time, large pieces of bandwidth are left unoccu-

pied. Emabling the wireless devices to sense the frequency

spectrum in a decentralized manner1 allows for a potentially

high increase of spectral efficiency, which we define here

as the actual averaged transmission rate over the theoretical

capacity. These large-scope ideas from Mitola recently mo-

tivated a wide range of research with common denominator

the introduction of intelligence in wireless devices. For in-

stance, Haykin [5] introduces the concept of interference

temperature, which allows to control the level of interfer-

ence allowed in a network, i.e., if a given user has a rate

constraint largely inferior to the effective channel capacity,

the excess unused rate could be used by another device, as

long as this device does not request more than the available

excess rate. This interference temperature brought the new

idea of primary and secondary users in a wireless network:

primary users are those subscribers who are charged a high

price to communicate with high quality of service, while

secondary users pay a lower price to communicate over op-

portunistic excess rates left unused by the primary users,

e.g., [6], [7].

However, all these ideas, revolutionary as they may seem,

only scratch the surface of a larger entity that is the cog-

nitive radio. Indeed, if the cognitive radio is defined, as

was supposedly the prior idea of Mitola or even more cer-

tainly the basic view of Haykin2, as a radio in which all

entities are capable of cognition, then the limitations in the

capabilities of these radios is still unknown and not really

explored. Concrete works on smart devices date back to

Shannon’s time as well. Claude Shannon was already inter-

ested in ideas such as a robot capable of playing chess [8];

he provided an original viewpoint of the cognitive abilities

of future computers back in 1953 [9] and even constructed

a mind-reading machine, the circuitry of which is depicted

in [10].

1So to limit the needs for control signaling.
2Remember that the title of his main contribution on cognitive radios [5]

refers to “brain-empowered” radios.
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In this work, we propose to define a fundamental basis

for cognitive radios on a physical layer viewpoint, which

enables human-like intelligence in wireless devices. This

work comes as a rupture compared to previous telecom-

munication work, as we will no longer rely on Shannon’s

work, but will rather extend it. The reasons why we es-

cape from Shannon’s framework will be explained and jus-

tified in the following sections. The additional mathemati-

cal tools needed to extend Shannon’s theory of information

are the theory of Bayesian probabilities, the maximum en-

tropy principle [11] and the minimal cross-entropy princi-

ple [12], [13], among others.

The remainder of this paper unfolds as follows: in Sec-

tion 2, we present the key philosophical ideas which lead

from Shannon’s classical information theory to Jaynes’

more general probability theory. In Section 3, we provide

two examples of direct application of Jaynes’ maximum

entropy principle to the problems of channel modeling and

signal sensing. Then in Section 4, we discuss the present

advantages and limitations of cognitive radios, and provide

our conclusions in Section 5.

Notation: In the following, boldface lower-case symbols

represent vectors, capital boldface characters denote matri-

ces (IN is the N ×N identity matrix). Xi j denotes the (i, j)
entry of X. The Hermitian transpose is denoted (·)H. The

operators trX and |X| represent the trace and determinant,

respectively. The symbol E[·] denotes expectation. The

operator vec(·) turns a matrix X into a vector of the con-

catenated columns of X. Finally, the notation Px(y) denotes

the probability density function of the variable x in position

x = y.

2. From Shannon to Jaynes

We will first present a simple example to show the inherent

limitations of Shannon’s theory of information.

2.1. Channel Capacity Revisited

Let us consider the simplest communication scheme, mod-

eled as

y = x + n , (1)

for some transmit signal x, additive background noise n and

receive signal y. The Shannon capacity C of such a system

reads

C = sup
px

I(x;y) , (2)

with px the probability distribution of the variable x taken

in the set of single-variable probability distributions, and

I denotes the mutual information [1]. The Eq. (2) can only

be computed if the distribution of n is known. In practice,

n is often taken as Gaussian, both for simplicity reasons and

because this is somehow often close to the reality. However,

there is no actual way to predict the distribution of the noise

before transmitting data, and in reality the expression (2)

is impossible to compute. This leads to the conclusion that

all capacity computations are in fact only approximations

of Eq. (2).

Moreover, it is important to observe that what we call noise

is in effect the sum contribution of interfering waves with

different properties. If part of this noise can be analyzed

by the cognitive device3, then the capacity will increase.

All these primary observations lead to realize that the chan-

nel capacity is largely dependent on the prior information

available at the receiver. In particular, two identical re-

ceivers, facing the same channel, may have different actual

capacities depending on the individual channel state infor-

mation.

Assuming the noise is known to be Gaussian with zero

mean, the receiver is left to estimate the noise variance. In

general, only approximative values of the SNR are avail-

able. Therefore, the channel capacity might be better seen

as a rate vector, with entries indexed by every possible

values of the SNR and taking different degrees of prob-

ability. These degrees of probability differ for each re-

ceiver, making the capacity again information-dependent

and user-dependent. As a matter of fact, what one would

call “real capacity”, that would correspond to the capac-

ity if the receiver knows exactly the noise variance, does

not carry in itself any actual significance: as recalled by

Jaynes [11; p. 634], the channel capacity is not an intrinsic

value of the channel but an intrinsic value of the level of

knowledge of the system designer4.

2.2. Limitations of Information Theory

Already in 1963, Leon Brillouin [14] realized the funda-

mental limitation of Shannon’s information theory. In his

own words [14], “The methods of [information] theory can

be successfully applied to all technical problems concern-

ing information: coding, telecommunication, mechanical

computers, etc. In all of these problems we are actually

processing information or transmitting it from one place to

another, and the present theory is extremely useful in setting

up rules and stating exact limits for what can and cannot

be done. But we are in no position to investigate the pro-

cess of thought, and we cannot, for the moment, introduce

into our theory any element involving the human value of

the information. This elimination of the human element is

a very serious limitation, but this is the price we have so

far had to pay for being able to set up this body of scien-

tific knowledge. The restrictions that we have introduced

enable us to give a quantitative definition of information

and to treat information as a physically measurable quan-

tity. This definition cannot distinguish between information

of great importance and a piece of news of no great value

for the person who receives it.”

Within the realm of cognitive devices, this situation in
which information carries relevance, which depends on

whom receives it, typically arises. Let us go back to

3There is no reason why a cognitive device would not be able to infer
on what the noise is made of.

4The system designer can be seen as a virtual entity sharing the knowl-
edge of both transmitter and receiver.
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the channel capacity example above. If the receiver is
provided with some additional information concerning the

transmission medium, like the typical channel delay spread,
the channel Doppler spread, the number of reflections, the

presence of buildings in the neighborhood, how much does

this affect the channel capacity is an open issue, which
cannot be solved within Shannon’s framework. And if the

receiver experiences a poor decoding rate, what kind of in-

formation should it request to the transmitter in order to in-
crease its performance is also an open question, e.g., should

the receiver request more pilot symbols at the risk of a huge
waste in spectral efficiency, should the receiver request

some deterministic information regarding a given param-

eter of the channel? All these problems do not have de-
terministic channel-dependent answers but depend on the

specific knowledge of the transmitter/receiver pair to which

some piece of additional information might or might not be
valuable.

To partially answer those questions, we propose in the fol-

lowing to introduce first the notion of degrees of belief,
which turns every deterministic measurable entity, e.g., the

value of the channel capacity, the value of the SNR or the
value of the channel fading, into a random variable with an

assigned probability distribution: this probability distribu-

tion will translate the confidence of the cognitive devices
regarding the estimation of the measurable entity in ques-

tion. Then, we will introduce the notion of relevance which

enables to estimate the relative importance of information.
Finally, we will discuss our general view of the capabilities

of a cognitive radio.

2.3. The Bayesian Approach

As briefly stated in the previous section, we aim at extend-

ing the classical Shannon’s information theory to enable

cognitive devices with the ability of plausible reasoning.

That is, a cognitive radio should not rely on empirical (often

erroneous) decisions, but rather should be able to express

doubt and to reason honestly when provided with limited

knowledge. A first step in this approach is to turn empirical

decisions into degrees of belief.

2.3.1. Degrees of Belief and the Maximum Entropy

Principle

In the Bayesian philosophy, contrary to the orthodox prob-

ability philosophy, deterministic parameters of a system,
e.g., a weight, a height, the channel delay spread, which

a cognitive entity needs to evaluate, must be character-

ized by the degrees of belief attached to all possible values
for this parameter. Therefore this gives a clear meaning,

for instance, to the probability that the height of the Eif-
fel Tower is 50 m. As a consequence, assuming a cogni-

tive telecommunication device is not aware of the inten-

sity σ2 of the background noise, instead of expressing the
achievable transmission rate as the scalar C = log(1+σ2),
which is therefore irrelevant to the communication de-

vice, it would be more adequate to consider the “vector”

C(x) = log(1 + x), x ≥ 0, attached to a degrees of belief
function, i.e., a probability density function, p(x) for each

potential noise variance x. Two fundamental questions arise
at this point: (i) how to use the vector C(x)?, and (ii) how

to compute p(x)?
Answering (i) is a matter of decision theory, in the sense
that different requirements might come into play to de-

cide on the actual transmission rate to use: if reliability

is needed, one will decide to transmit at a rate log(1 + x)
such that

∫ x
0 p(t)dt is less than a given (small) value, while

if performance with low reliability is sought for, then x

will take a larger value. This part of the cognitive radio

spectrum will not be covered in this contribution.

Question (ii), on the contrary, is the point of interest in the
present paper. Given the total amount of prior information

at the cognitive device, how to assign degrees of belief in

a systematic way? The answer to this question partially
appears in the work of Shannon [1] but is better explained

and developed by Jaynes [15] thanks to the introduction of
the maximum entropy principle (MaxEnt) [16]. The key

idea behind MaxEnt is to find a density function p, which

fulfills the constraints imposed by the prior information I

while introducing no additional (unwanted) information. In

other words, this density function should maximize the ig-

norance about unknown parameters of the cognitive device,
while satisfying the constraints given in I. In Jaynes’ terms,

this density function is maximally non-committal regarding

missing information. This function translating ignorance is
proven by Jaynes and more accurately later by Shore and

Johnson [17] to be the entropy function H:

H(p) = −

∫

log(p(t))p(t)dt . (3)

When the information contained in I is of statistical nature,
such as first or second order statistics, the function p which

maximizes the entropy while satisfying the constraints
in I is unique and can be computed with Lagrangian mul-

tipliers. An example will be given in Subsection 3.1.

2.3.2. Relevance

The problem of relevance of information is a second topic

in the establishment of foundations for cognitive radios.
If cognitive devices were to act like human beings, they

should be able to request additional information when they
do not have enough evidence to take decisions. For in-

stance, to obtain a more accurate estimate of the noise vari-

ance σ2 in order to have more confidence on the achievable
transmission rates, an intelligent device could require the

transmitter to stop transmitting so that it can estimate σ2.

But this would be an expensive waste in spectral efficiency,
so it could alternatively request deterministic information

on a dedicated channel from the transmitter. How accurate
this information must be is then another problem. To be

able to decide on what question to ask to the transmitter,

the cognitive device needs to be able to judge the relevance

of every possible question.

This notion of questions, or inquiries, is a philosophical

topic upon which little literature and very few concrete
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results exist. In 1978, Cox [18], who is also at the origin
of the immense work from Jaynes on Bayesian probability

theory [19], mathematically defined a question as the set
of possible answers to this question. Therefore, a question

will be relevant if its answers carry valuable information.

Assuming the set of questions is seen as an ordered set,
with the largest questions being the most relevant (since

their answers carry potentially more cogent information),

a cognitive device can decide which appropriate request to
formulate to the transmitter. The work on relevance and

questions is however still in its infancy, but we insist that
those are fundamental needs to the cognitive radio field; for

instance, interesting contributions are found in the works of

Knuth et al. [20], who uses lattice theory to create partial
orders of finite sets of questions, which is seen as the dual

(in the lattice theory terminology) of the set of answers to

those questions.

2.3.3. What is a Cognitive Radio?

In our viewpoint, a cognitive radio must ideally be able to

adapt to its environment, by gathering all cogent informa-

tion about the propagation channel, the transmitted signal,
etc., while never producing undesirable empirical informa-

tion. This would therefore relieve the telecommunication
field from all ad hoc methods, based on empirical decisions

concerning unknown parameters. This does not mean that

a cognitive device is not prone to making errors; however,
these potential errors will never originate from erroneous

system assumptions, but rather from lack of information,

which would generate broad maximum entropy distribu-
tions5. If more cogent information is provided to a cog-

nitive device, it will integrate it and increase its decision

capabilities. In a way, the more signals a cognitive com-
munication device is fed with, the more efficient it is; this

would mean, for instance, that cognitive devices age wisely:
the older the cognitive device, the more efficient.

Regarding for instance signal sensing, the first steps of

which will be detailed in Section 3, we expect a cogni-
tive device to process the received signals as follows:

1. Initialization: integrate all cogent information about
the communication channel, the properties of the sup-

posedly received informative signal, etc., and com-
pute the degrees of belief associated to all relevant

variables.

2. Update loop: when the cognitive device is fed with
incoming signals, it shall update its degrees of belief

regarding all the previous variables and provide the

overall probability that the received signal originates
from a coherent data source.

3. Decision: using some criterion from decision theory,
e.g., the evidence for the presence/absence of a co-

5When little is known on a given parameter, the maximum entropy
distribution attached to this parameter will be broad in the sense that no
specific value is preferred to any other, while when more information is
available on this parameter, the maximum entropy distribution will be very
peaky around the exact value of the parameter.

herent data source is more than a given threshold,
the cognitive device declares whether data originat-

ing from a coherent source have been received.

This protocol does not necessarily provide the most efficient

sensing strategy in specific situations (sometimes it might

provide a quick response, sometimes traditional algorithms

might provide faster responses), but it provides the most

honest way to treat the signal sensing problem. It is impor-

tant to note that no signal detection strategy can be proven

superior to any other as long as too much information on

the communication environment is missing. If a given al-

gorithm could be proven better than the Bayesian strategy,

this would mean this algorithm has an information advan-

tage; honesty would then require that the Bayesian strat-

egy be aware of this additional piece of information. The

significant advantage of the Bayesian philosophy and the

maximum entropy principle over classical methods is that

they do not to take any empirical guess to solve a problem.

Therefore, instead of being either luckily very good, or un-

luckily very bad depending on the accuracy of this “guess”,

they perform as best as their prior information allows them

to.

Also, a cognitive device ought to be capable of request-

ing information when it faces a situation where it crucially

lacks cogent information; for instance, a cognitive mobile

phone in a low network coverage situation, should be able

to request information (or even help) to the neighboring cell

phones which enjoy better coverage. The interest of this re-

quest would be measured by its relevance. Adding the pos-

sibilities of formulating inquiries might eventually lead to

enabling cognitive devices with the ability of discussing, in-

stead of just transmitting and receiving. Bidirectional com-

munications used to be a point of deep interest when it was

realized that Shannon’s theory of communication is in fact

precisely a theory of transmission, in which past transmit-

ted information is assumed uncorrelated with subsequent

transmitted information. In 1973, Marko proposed a gen-

eralization of Shannon’s information theory framework to

encompass bidirectional communications [21], in the ob-

jective to accurately model the social interactions among

animals and especially human beings. The lead was then

followed by Massey [22] who extends information theory

to include feedback in the expression of Shannon’s mutual

information.

3. Examples of Application

The most elementary requirement of a cognitive radio lies

in its sensing capabilities. When a waveform is received

at the cognitive device, it must be capable of deciding

whether this waveform originates from a coherent source of

information or if this waveform is pure background noise.

When little is known by the receiver concerning the sur-

rounding environment, this problem is very intricate and

has led to lots of different ad hoc techniques. Our purpose

in the following is to provide a unique way of deciding on
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the presence of a coherent data source given a specific

amount of prior information at the receiver. First, we will

discuss channel modeling, which is a necessary step to

properly handle the Bayesian signal detection method.

3.1. MaxEnt Channel Modeling

3.1.1. Introduction

Channel modeling is an entire field of research in telecom-

munications, which produces every year lots of new contri-

butions. However, this huge amount of previous work on

channel models leads to the following paradoxical conclu-

sion: for a given total information gathered by a cognitive

device, there exist many different channel models proposed

in the literature. In such a situation, which of those channel

models is the cognitive device supposed to trust? In real-

ity, the fundamental difference between all those models

lies in the additional hypothesis each of them, explicitly or

implicitly, carries; some models might implicitly suggest

that channels usually have a short delay spread for a given

communication technology, or might suggest that it is very

likely to have a strong line of sight component, etc.

However, if the receiver is not aware of that implicit in-

formation, this very information should honestly not be

taken into account. What we will provide in the follow-

ing is a systematic way to model channels, given some

cogent information I, which fulfill the constraints imposed

by I while being non-committal regarding unknown pa-

rameters. In brief, we will provide the most elementary

models compliant with I, without introducing unwanted

hypothesis.

3.1.2. Gaussian i.i.d. Channels

Surprisingly enough, we will realize that most of the clas-

sical channels in the basic literature fall into the maximum

entropy channel modeling methodology. This is the case

of Gaussian i.i.d. Indeed, let us assume that the informa-

tion I known to the cognitive device gathers the following:

– the transmitter is equipped with nT transmit antennas,

– the receiver is equipped with nR receive antennas,

– the channel carries an energy E .

The transmission model is

y =

√

ρ

nT

Hx + n , (4)

where x ∈ CnT is the transmitted symbol vector, n ∈ CnR

the thermal or interfering noise, ρ the signal to noise ratio

and H ∈ CnT×nR the channel we want to model.

In mathematical terms, based on the fact that

∫

dH

nR

∑
i=1

nT

∑
j=1

|hi j|
2PH(H) = nTnRE (finite energy), (5)

∫

dPH(H) = 1 (PH(H) is a probability distribution), (6)

what distribution PH
6 should the modeler assign to the

channel? The modeler would like to derive the most gen-

eral model complying with those constraints, in other words

the one which maximizes our uncertainty while being con-

sistent with the energy constraint. This statement is math-

ematically expressed by the maximization of the follow-

ing expression involving Lagrange multipliers with respect

to PH:

L(PH) =−

∫

dHPH(H)logPH(H)

+ γ
nR

∑
i=1

nT

∑
j=1

[E −

∫

dH|hi j|
2PH(H)]

+ β

[

1−
∫

dHPH(H)

]

. (7)

If we derive L(PH) with respect to PH, we get

dL(PH)

dPH

= −1− logPH(H)− γ
nr

∑
i=1

nt

∑
j=1

|hi j|
2 −β = 0 , (8)

which yields

PH(H) = e
−(β+γ ∑

nR
i=1 ∑

nT
j=1|hi j |

2

= e−(β )
nR

∏
i=1

nT

∏
j=1

exp−(γ | hi j |
2)

=
nR

∏
i=1

nT

∏
j=1

Phi j
(hi j)

with

Phi j
(x) = e

−(γ|x|2+ β+1
n
R

n
T

)
. (9)

One of the most important conclusions of the maximum

entropy principle is that, while we have only assumed the

knowledge about the variance, this assumption naturally

implies independent entries since the joint probability dis-

tribution PH simplifies into products of Phi j
. Therefore,

based on the previous state of knowledge, the only solution

to the maximization of the entropy is the Gaussian i.i.d.

channel. This does not mean that we have supposed in-

dependence of the channel fades in the model, nor does it

mean that real channels ought to be i.i.d. if those are known

to be of energy E . However, in the generalized L(PP) ex-

pression, there exists no constraint on the dependence of

the channel entries and this leads to natural independence

as an honest guess on the behavior of the channel entries.

Another surprising result is that the distribution achieved

is Gaussian. Once again, Gaussianity is not an assumption

but a consequence of the fact that the channel has finite

energy.

6It is important to note that we are concerned with PH|I , where I rep-
resents the general background knowledge (here the variance) used to
formulate the problem. However, for the sake of readability, PH|I will be
denoted PH.
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3.1.3. Other Channel Models

In [23], a more complete survey on MaxEnt channel models
is proposed. We will gather in the following the main

results.

If the information I at the receiver is the same as previ-
ously but the receiver is not aware of the exact value of

the channel energy E but knows that it is contained in the

interval [0,Emax], then

PH(H) =

∫

PH,E(H,E)dE (10)

=

∫

PH|E(H)PE(E)dE . (11)

If PE is assigned a uniform prior on the set [0,Emax], then

we obtain7:

PH(H)=
1

EmaxπnRnT

∞
∫

1
Emax

unRnT−2e
−∑

nR
i=1 ∑

nT
j=1 |hi j |

2u
du . (12)

Note that the distribution is invariant to unitary transfor-
mations, is not Gaussian and moreover the entries are not

independent when the modeler has no knowledge on the
amount of energy carried by the channel. This point is

critical and shows the effect of the lack of information on

the exact energy.

If the channel covariance matrix Q = E(vec(H)vec(H)H)
is known to the receiver, and therefore is part of the

side information I, then, denoting Q = VΛΛΛVH the spec-
tral decomposition of Q, with V =

[

v1, ...,vnRnT

]

and ΛΛΛ =
diag(λ1, ...,λnRnT

):

PH(H) =
1

∏
nRnT

i=1 πλi

exp

{

nRnT

∑
i=1

| vH

i vec(H) |2

λi

}

. (13)

3.2. Signal Detection

Now that channel modeling has been investigated, the mul-

tiple antenna signal sensing problem can be completely

handled.

3.2.1. Channel State Information

In this problem, the cogent information at the receiver is

divided into known parameters:

• S-i) the receiver has nR antennas;

• S-ii) the receiver samples as many as L times the

input from the RF interface;

• S-iii) the signal sent by the transmitter has a con-

stant unit mean power; it is quite important to note

7The assignment of uniform priors on variables defined on a continuous
space is a very controversial point of the maximum entropy theory, which
is longly discussed in [11]. Another classically used prior, which solves
the problem of invariance to variable change is the so-called Jeffreys’
uninformative prior [24].

that this hypothesis is very weak and should be made

more accurate for communications schemes that are

known only to use either QPSK (quadrature phase

shift keying), 16-QAM (quadrature amplitude modu-

lation), 64-QAM modulations for instance;

• S-iv) the MIMO channel has a constant mean power.

We similarly define additional information the receiver may

be aware of

• V-i) the transmitter possesses (and uses) nT antennas;

• V-ii) the noise variance σ2 is known.

3.2.2. Signal Model

Given a certain amount of sampled signals, the objective

of the signal detection methods is to be able to optimally

infer on the following hypothesis:

• H0: only background noise is received;

• H1: informative data added to background noise is

received.

Given hypothesis S-iii), the only information on the trans-

mitted signal (under H1) is its unit variance. The maxi-

mum entropy principle claims that, under this limited state
of knowledge, the transmitted data must be modeled as i.i.d.

Gaussian [11]. The data vector, at time l ∈ {1, . . . , L},

is denoted s(l) = (s
(l)
1 , . . . , s

(l)
nT

)T ∈ CnT . The data vectors

are stacked into the receive matrix S = [s(1), . . . ,s(L)].
If the noise level σ2 is known, then either under H0 or H1,

the background noise must be represented, due to the same
maximum entropy argument as before, by a complex stan-

dard Gaussian matrix ΘΘΘ ∈ CnR×L (i.e., a matrix with i.i.d.
standard complex Gaussian entries θi j) [25]. Under H1,

the channel matrix is denoted H ∈ CnR×nT with entry hi j

being the link between the jth transmitting antenna and
the ith receiving antenna. The model for H follows the

MaxEnt channel modeling rules. In the present situation,

only the constant mean power (or equivalently, the energy)
of the channel is known. Therefore H will be modeled

as i.i.d. Gaussian, following the reasoning in the previous
section. The received data at sampling time l are given by

the nT × 1 vector y(l) that we stack, over the L sampling

periods, into the matrix Y = [y(1), . . . ,y(L)] ∈ CnR×L.

This leads for H0 to the model:

Y = σΘΘΘ . (14)

And for H1 to

Y = [H , σIN ]

[

S

ΘΘΘ

]

. (15)

We also denote by ΣΣΣ the covariance matrix

ΣΣΣ = E[YYH] (16)

= L
(

HHH + σ2InR

)

(17)

= U(LΛΛΛ)UH, (18)
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where ΛΛΛ = diag
(

ν1 + σ2, . . . ,νnR
+ σ2

)

, with
{

νi, i ∈

{1, . . . ,nR}
}

the eigenvalues of HHH and U a certain uni-

tary matrix.

Our intention is to make a decision on whether, given the

received data matrix Y, the probability for H1 is greater

than the probability for H0. This problem is usually re-

ferred to as hypothesis testing [11]. The decision criterion

is based on the ratio

C(Y) =
PH1|Y(Y)

PH0|Y(Y)
, (19)

which we need to decide is whether lesser or greater

than 1.

3.2.3. Results and Experiments

At this point in the derivation, computing C resorts to mere

mathematical integration. The details of the calculus are

given in [26]. We only provide here the results. First,

assume σ2 and nT are known, then, denoting x1, . . . ,xnR

the eigenvalues of YYH:

PY|H0
(Y) =

1

(πσ2)nRL
e
− 1

σ2 trYYH

(20)

=
1

(πσ2)nRL
e
− 1

σ2 ∑
nR
i=1 xi (21)

and

PY|H1
(Y)

=

∫

ΣΣΣ

PY|ΣΣΣH1
(Y,ΣΣΣ)PΣΣΣ(ΣΣΣ)dΣΣΣ (22)

=
∫

U(nR)×(R+)nR

PY|ΣΣΣ,H1
(Y,UΛΛΛUH)PΛΛΛ(ΛΛΛ)dUdΛΛΛ , (23)

which, after complete derivation, using in particular the

Harish-Chandra identity [27], gives

PY|H1
(Y) = α ∑

a⊂[1,nR]

e
∑

n
T

i=1
xai

σ2

∏
ai

∏
j 6=a1
...

j 6=ai

(xai
− x j)

× ∑
b∈P(nT)

(−1)sgn(b)+1
nT

∏
l=1

JnR−L−2+bl
(nTσ2,nTxai

) (24)

with P(k) the ensemble of permutations of k, sgn(b) the

sign of the permutation b:

Jk(x,y) =

+∞
∫

x

tke−t− y
t dt (25)

and

α =
(nR−nT)!nT

(2L−nT+1)nT/2e
nT

2σ 2−
∑

n
R

i=1
xi

σ2

nR!πnRLσ2(nR−nT)(L−nT) ∏
nT−1
j=1 j!

. (26)

Fig. 1. Detection amplitude comparison in MIMO; M = 1, N = 8,

L = 20, SNR = −10 dB.

Fig. 2. Detection amplitude comparison in MIMO; M = 2, N = 8,

L = 10, SNR = −10 dB.
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These expressions are rather complex but show that the

Bayesian signal detection, within the state of knowledge I,

only depends on the eigenvalues x1, . . . ,xnR
of the Gram

matrix YYH of the received data Y.

A comparison with the classical power detector,

e.g., [28]–[30], which consists in summing all individ-

ual powers received on the antenna array is provided in

Fig. 1. In the latter, nT = 1 and the comparison is made

between the difference “correct detection rate minus false

alarm rate” computed from Monte Carlo simulations for

both Bayesian and classical signal detectors.

We observe a slight gain in performance due to the novel

Bayesian detector. Especially, for a low false alarm rate

(which is often demanded in practice), we observe a large

gain in correct detection rate provided by the Bayesian de-

tector. This statement is however only valid for nT = 1.

When nT is larger, then the channel hardening effect re-

duces the gain of the Bayesian detector. This is shown in

Fig. 2 in which nT = 2.

Now, if the noise power σ2 is not perfectly known (this is

classically the situation since knowledge of the noise power

implies prior identification of the background noise), the

probability distribution must be updated by marginalizing

over σ2, from the lower bound σ2
− to the upper bound σ2

+

on σ2. Therefore:

PY|I =
1

σ2
+−σ2

−

∫ σ 2
+

σ 2
−

PY|σ 2,I(Y,σ2)dσ2, (27)

which is too involved to compute, but can be numerically

estimated. An example is provided in Fig. 3 in which

Fig. 3. False alarm (FA) and correct detection (CD) rates for

exact, short discrete range ({0,2.5,5}) and large discrete range

({−5,−2.5,0,2.5,5}) SNR; M = 1, N = 8, L = 10, SNR = 2.5 dB.

the intervals [σ2
−,σ2

+] are taken increasingly large. In the

latter, correct detection rate against false alarm rate is de-

picted for different values of σ2
− and σ2

+. It is observed

that the range of ensured correct detection gets increasingly

narrower when [σ2
−,σ2

+] is large. Note that this situation

cannot be compared against classical power detection

methods which do not provide solutions when σ2 is not

perfectly known.

4. Discussion

In addition to these first two studies on maximum entropy

considerations for cognitive radios, the authors proposed

more practical studies on maximum entropy orthogonal

frequency division multiplexing (OFDM) channel estima-

tion [31], maximum entropy carrier frequency offset esti-

mation [32; Chapter 13], minimal update channel estima-

tion [33], etc. From all those studies, we draw the following

conclusions.

• Quite often, classical techniques, in particular in

the channel estimation field, are rediscovered us-

ing MaxEnt. However, it is important to note that,

even if the final formulas are the same in the classi-

cal and Bayesian MaxEnt approach, the philosophi-

cal conclusions are very different. Usually classical

methods derive from empirical parameter settings,

which could have been chosen differently, while

Bayesian approaches give unique deterministic so-

lutions, which stem from honesty in the treatment of

prior information.

• The MaxEnt principle allows one to marginalize over

all parameters when those are not perfectly known.

As a consequence, while classical solutions are found

anew, those methods can usually be extended to cope

with the lack of information on some key variables.

For instance, in the signal sensing proposed in Sec-

tion 3 and completed in [26], the situations where

noise variance and number of transmit antennas are

not perfectly known can be easily handled, whereas

classical methods stumble on these problems and

solve them by empirical (possibly largely erroneous)

parametrizations.

On the other hand, MaxEnt calculus and final solutions can

turn very rapidly extremely mathematically involved, as ex-

emplified by the final signal sensing formula in Section 3.

This is a major problem, and the subject of most criticism

towards Bayesian approaches. A missing part in these Max-

Ent approach would be a systematic method which, from

the general (very involved) solution, would provide approxi-

mate solutions. Quite remarkably, Caticha provides a vision

of the maximum entropy principle, or more precisely the

minimum cross entropy principle, which might help decide

on the optimal approximation taken from a set of possible

approximations [34]. These considerations might lead to

such systematic approximation methods.

Another point of concern in the MaxEnt framework lies in

the many integrals that may need to be computed when lit-
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tle is known on the surrounding environment. With the in-

creasing capabilities of modern computers, numerical ap-

proximations might help to compute those integrals, but

these approximations would only be valid if not so many

integrals are considered; two reasons explain this fact: first,

the complexity increase due to additional integrals is expo-

nential in the number of integrals and second, small errors

in inner integrals tend to lead to large errors when inte-

grated many times (this is often referred to as the curse of

dimensionality).

As a consequence, while the first MaxEnt results provided

by the authors show significant performance increase, many

problems remain to be solved for cognitive radios to be

fully intelligent, both on fundamental philosophical con-

siderations (many questions raised in the introduction of

the present paper are left unanswered) and on practical ap-

plications.

5. Conclusion

In this paper, we introduced the fundamentals of cognitive

radios under a physical layer viewpoint. These fundamen-

tals are based on the extension of Shannon’s information

theory to the Bayesian probability theory and the maximum

entropy principle, which enables the cognitive devices with

plausible (human-like) reasoning. Through the first-step

studies of maximum entropy channel modeling and signal

sensing, we paved the path to the establishment of strong

theoretical grounds to the realm of cognitive radios.
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the Supélec, France. His research interests include wireless

communications, multi-user MIMO detection techniques,

cognitive radio and random matrix theory. He is the recip-

ient of the Valuetools 2008 best student paper award.

ST-Ericsson

505 route des Lucioles, 06650 Sophia Antipolis, France

e-mail: romain.couillet@supelec.fr

Alcatel-Lucent Chair, Supélec
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