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Abstract — Bent functions, having the highest possible non-
linearity, are among the best candidates for construction of
SSS-boxes. One problem with bent functions is the fact that they
are hard to find among randomly generated set of Boolean
functions already for 6 argument functions. There exist some
algorithms that allow for easy generation of bent functions.
The major drawback of these algorithms is the fact that they
rely on deterministic dependencies and are only able to gen-
erate bent functions belonging to one specific class. In our
paper we present an efficient generator of random bent func-
tions of more than 4 arguments. Resulting functions are not
bounded by constraints described above. The generator oper-
ates in algebraic normal form domain (ANF). We also present
our result on comparing the performance of SSS-boxes build us-
ing our bent function generator versus a standard method of
bent function construction. We also give some directions for
further research.

Keywords — block ciphers, S-boxes, bent functions, construc-
tion, random generation, nonlinearity.

1. Introduction

In block ciphers based on S-boxes, the cryptographic
strength (i.e. resistance to cryptanalysis attack) depends
on the nonlinear properties of an S-boxes used to build
the cipher. S-boxes are built from Boolean functions, so
quality of each and every function constituting an S-box is
of a greatest importance. Another major consideration for
S-box construction is the way functions that form an S-box
“interact” (behave as a group of functions) – what are the
cryptographic properties of an S-box as a whole. These are
two main factors that affect cipher’s cryptographic perfor-
mance.

The properties of Boolean functions have been extensively
studied. The quality of a single, cryptographically strong
Boolean function is measured by its cryptographic proper-
ties. The criteria against which a function quality is mea-
sured are mainly nonlinearity, balancedness, avalanche and
propagation criteria.

The qualities that single Boolean functions should posses
to be good candidates for S-box construction are very sim-
ilar to those that should be characterizing a good (strong)

S-box (taken as a linear combination of constituting func-
tions). The nonlinear properties are by far the most impor-
tant. In recent years a class of highly nonlinear functions
attracted a lot of researchers’ attention – a class of bent
Boolean functions. These functions have in fact the high-
est possible nonlinearity (they also have very good prop-
agation characteristics and are nearly balanced – another
important criterion for good cryptographic function – spe-
cial algorithm have been proposed by different authors for
transforming bent functions into balanced Boolean func-
tions while maintaining high level of nonlinearity).

However one major drawback is the fact that bent functions
are not easily constructed (i.e. their constructions are time
consuming). Trying to find bent functions by pure random
search is also virtually impossible (already for 6-argument
functions, only one in 2:9�10�10 Boolean functions is bent).
Also, an S-box that is constructed using only bent functions
does not necessarily possess the best nonlinear qualities.
So usually a number of different S-boxes should be gener-
ated and tested, and then only the best S-boxes should be
selected for incorporating in block cipher. This approach
demands fast S-box generation which in turn translates to
fast bent function generation.

The remainder concentrates on efficient random bent func-
tion generation and using such generated function for S-box
construction.

2. Preliminaries

We use square brackets to denote vectors like [a1; : : : ;an]
and round brackets to denote functions like f (x1; : : : ;xn).

Boolean function. Let GF(2) =< ∑;�;� > be two-
element Galois field, where ∑ = f0;1g; � and � denotes
the sum and multiplication mod 2, respectively. A func-
tion f : ∑n ! ∑ is an n-argument Boolean function. Let
z= x1 � 2

n�1+ x2 � 2
n�2+ : : :+ xn � 20 be the decimal rep-

resentation of arguments (x1;x2; : : : ;xn) of the function f .
Let us denote f (x1;x2; : : : ;xn) as yz. Then [y0;y1; : : : ;y2n�1]
is called a truth table of the function f .

Linear and nonlinear Boolean functions. An n-argument
Boolean function f is linear if it can be represented in the
following form: f (x1;x2; : : : ;xn) = a1x1� a2x2� : : :anxn.
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Let Ln be a set of all n-argument linear Boolean func-
tions. Let Mn = fg : ∑n ! ∑ j g(x1; x2; : : : ; xn) = 1�
f (x1;x2; : : : ;xn) and f 2 Lng. A set An = Ln [ Mn is called
a set of n-argument affine Boolean functions. A Boolean
function f : ∑n ! ∑ that is not affine is called a nonlinear
Boolean function.

Balance. Let N0[y0;y1; : : : ;y2n�1] be a number of ze-
ros (0’s) in the truth table [y0;y1; : : : ;y2n�1] of func-
tion f , and N1[y0;y1; : : : ;y2n�1] be number of ones (1’s).
A Boolean function is balanced if N0[y0;y1; : : : ;y2n�1] =
= N1[y0;y1; : : : ;y2n�1].

Algebraic normal form. A Boolean function can also
be represented as a maximum of 2n coefficients of the
algebraic normal form. These coefficients provide a for-
mula for the evaluation of the function for any given input
x= [x1;x2; : : : ;xn]:

f (x) = a0�
n

∑
i=1

aixi � ∑
1�i< j�n

ai j xixj � : : :�a12:::nx1x2 : : :xn;

where ∑;� denote the modulo 2 summation.
The order of nonlinearity of a Boolean function f (x)
is a maximum number of variables in a product term
with non-zero coefficient aJ, where J is a subset of
f1;2;3; : : : ;ng. In the case where J is an empty set the
coefficient is denoted as a0 and is called a zero order coeffi-
cient. Coefficients of order 1 are a1; a2; : : : ;an, coefficients
of order 2 are a12;a13; : : : ;a(n�1)n, coefficient of order n is
a12:::n. The number of all ANF coefficients equals 2n.
Let us denote the number of all (zero and non-zero) coef-
ficients of order i of function f as σi( f ). For n-argument
function f there are as many coefficients of a given or-
der as there are i-element combinations in n-element set,
i.e. σi( f ) =

�n
i

�
.

Hamming distance. Hamming weight of a binary vector
x 2 ∑n, denoted as hwt(x), is the number of ones in that
vector.
Hamming distance between two Boolean functions f ;g :
∑n ! ∑ is denoted by d( f ;g) and is defined as follows:

d( f ;g) = ∑
x2∑n

f (x)�g(x):

The distance of a Boolean function f from a set of
n-argument Boolean functions Xn is defined as follows:

δ ( f ) = min
g2Xn

d( f ;g);

where d( f ;g) is the Hamming distance between functions
f and g. The distance of a function f from a set of affine
functions An is the distance of function f from the nearest
function g2 An.
The distance of function f from a set of all affine func-
tions is called the nonlinearity of function f and is denoted
by N f .

Bent functions. A Boolean function f : ∑n!∑ is perfectly
nonlinear if and only if f (x)� f (x�α) is balanced for any
α 2 ∑n such that 1� hwt(α)� n.

For a perfectly nonlinear Boolean function, any change of
inputs causes the change of the output with probability
of 1/2.
Meier and Staffelbach [16] proved that the set of per-
fectly nonlinear Boolean functions is the same as the set of
Boolean bent functions defined by Rothaus [5].
Perfectly nonlinear functions (or bent functions) have the
same, and the maximum possible distance to all affine func-
tions. So their correlation to any affine function is consis-
tently bad (minimal). Linear cryptanalysis works if it is
possible to find a good linear approximation of the S-box.

Bent functions are not balanced. This property prohibits
their direct application in S-box construction, however there
exist numerous methods for modifying bent function in
such a way so that the resulting function is balanced and
still maintains the good cryptographic properties of a bent
function [16]. Hamming weight of a bent function equals
2n�1�2n=2�1.
Differential analysis [18] can be seen as an extension of
the ideas of attacks based on the presence of linear struc-
tures [3]. As perfect nonlinear Boolean function have
maximum distance to the class of linear structures (equal
to 2n�2), they are a useful class of functions for construct-
ing mappings that are resistant to differential attacks.
Bent functions exist only for even n. The nonlinear order
of bent functions is bounded from above by n=2 for n> 2.
The number of Boolean bent function for n> 6 remains an
open problem.

3. Constructing bent functions

There exist a number of algorithms for constructing bent
functions. As an example let’s consider the follow-
ing [8, 12].

Method 1. Let Bn denote a set of bent functions f : ∑n!∑
with n even. Given a set of bent functions B6, bent func-
tions in B8 can be constructed using the following method
(Method 1).
Let a;b2 B6. Then the function f : ∑8 ! ∑ defined by:

f (x0 : : : ;x7) =

8>>><
>>>:

a(x0 : : :x5); x6 = 0; x7 = 0

a(x0 : : :x5); x6 = 0; x7 = 1

b(x0 : : :x5); x6 = 0; x7 = 0

b(x0 : : :x5); �1; x6 = 0; x7 = 0

is bent [8]. Rearrangements of the 64 blocks in the expres-
sion above also result in bent functions.
Another method for bent function construction was given
by Rothaus in [5].

Method 2. Let x= (x1; : : : ;xn) and let a(x); b(x) and c(x)
be bent functions such that a(x)�b(x)�c(x) is also bent.
Then a function f (x;xn+1;xn+2) = a(x)b(x)� b(x)c(x)�
c(x)a(x)� [a(x)�b(x)]xn+1� [a(x)�c(x)]xn+2�xn+1xn+2
is bent.
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Most of the known bent function constructions take bent
functions of n arguments as their input and generate bent
functions of n+2 arguments. One major drawback of these
methods is the fact that they are deterministic. Only short
bent functions (n= 4 or 6) are selected at random and the
resulting function is obtained using the same, deterministic
formula every time. Even if there is some “random” ele-
ment in such generation (like adding a linear term to the
resulting bent function) it does not bring any new quality
to the generated function.

4. Generating bent functions

To overcome some of the limitations and possible weak-
nesses of the bent functions construction methods described
above a new algorithm of random bent functions generation
have been proposed [24].
As already mentioned earlier, drawing bent functions at ran-
dom is not feasible already for small number of arguments
(n > 6). To make such generation possible, an algorithm
was designed that generates random Boolean functions in
algebraic normal form thus making use of some basic prop-
erties of bent functions to considerably narrow the search
space. This makes the generation of bent functions feasible
for n� 8 even on a standard PC machine. The algorithm
for the generation of bent functions in ANF domain takes
as its input the minimum and maximum number of ANF
coefficients of every order that the resulting functions are
allowed to have. Since the nonlinear order of bent functions
is less or equal to n=2, clearly in ANF of a bent function
cannot be any ANF coefficient of order higher then n=2.
This restriction is the major reason for random generation
feasibility, since it considerably reduces the possible search
space.
The number of ANF coefficients of orders less or equal
to n=2 can be fixed or randomly selected within allowed
range (i.e. between 0 and σ( f ) =

�n
i

�
for order i). If the

number of coefficients for a given order i is fixed then all
generated functions will have the same number of coeffi-
cients of that order, but the coefficients themselves will be
different in each generated function. If the number of co-
efficients for a given order i is randomly selected then all
generated functions will not only have different coefficients
but also the number of coefficients of order i will vary from
function to function. It is of course possible to fix the num-
ber of coefficients for some orders and have varied number
of coefficients for other orders.
One important consequence of this approach is the possi-
bility of prohibiting the generation of bent functions which
are merely a linear transformations of other bent functions.
This is easily achieved by setting the number of coefficients
of order 0 and 1 to 0. So in the ANF of the resulting func-
tions there will be no linear part. Bent functions of any
order can be generated with this method, simply by set-
ting any higher order coefficients to 0. Homogenous bent
functions can also be generated easily.

One drawback of the method is the fact that it does not
guarantee the generation of bent functions without repeti-
tions, although the chance of generating two identical bent
functions is minimal with any reasonably selected ranges
of number of ANF coefficients. However, if avoiding repe-
titions is an absolute requirement, the set of generated bent
functions must be checked for duplicates.

The limitations of this approach are twofold. First there
is a feasibility limit. Number of possible functions grows
with the number of coefficients of higher orders (i > 2) and
generating a bent function quickly becomes infeasible. So
the algorithm works best with the low number of higher or-
der coefficients (e.g. < 6 for n= 8 and order i = 3 and 4).
Due to the above limitation, this method does not gener-
ate all possible bent functions with equal probability. In
principle, it would be possible but is not feasible for the
reason described above. One has to limit the number of
higher order coefficients and at the same time prohibit the
generation of some bent functions.

5. Comparing pairs of bent functions

In this section some comparative results are presented.
Three sets of 8 argument bent Boolean functions are an-
alyzed: bent functions constructed using Method 1, bent
functions constructed using method given in [22] (Maio-
rana functions with permuted inputs) and randomly gen-
erated bent functions. For random, distinct i; j the non-
linearity of fi � f j was calculated. Figures 1 and 2
show the resulting nonlinearity distribution (in percentage).

Fig. 1. Pairs nonlinearity distribution. Constructed bent
(Method 1) versus generated bent.

The random bent functions were generated with the fol-
lowing parameters: number of 2nd order coefficients was
between 7 and 14 (statistically that yields the highest num-
ber of bent functions), number of 3rd order coefficients
was fixed at 2 and number of 4th order ANF coefficients
was also fixed at 2. There were no coefficients of order
0 and 1 to prevent the occurrences of bent functions that
would be just a linear transformations of one another.
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Fig. 2. Pairs nonlinearity distribution. Constructed bent (per-
muted Maiorana) versus generated bent.

For randomly generated functions the distribution is shifted
towards higher values (i.e. pairs have better nonlinearity)
and is also much more narrow - more appropriate pairs can
be found in this set of functions. The results obtained in
our experiments are also better then those presented in [22]
for a special subsets of bent functions: Maiorana functions
with permuted inputs.

6. Comparing S-boxes

In this section we present some properties of S-boxes build
using randomly generated bent function. We give com-
parative results of the performance of S-boxes build of
bent functions constructed using a method introduced by
Rothaus [5] (Method 2 from Section 3), bent functions
generated with our algorithm described in this paper and
random Boolean functions (not bent). Two properties of
S-boxes were measured: feasibility of a linear approxima-
tion which is a measure of S-box resistance against linear
cryptanalysis and nonlinearity of the S-box which is one of
the major criteria of cryptographic quality.

One has to note that for “real-life” applications bent func-
tions would have to be modified to be balanced prior to
their use in S-boxes. Such modification algorithms are be-
yond the scope of this paper, where main focus is kept on
bent functions.

6.1. Linear approximations of S-boxes

We used a method of linear approximation as described
in [23].
By linear approximation of a Boolean function h : ∑n!∑m,
written as Y = h(X), we mean any equation of the form:

∑
i2Y0

yi = ∑
j2X0

xj ; for Y0 � f1;2; : : : ;mg; X0 � f1;2; : : : ;ng;

fulfilled with the probability of p = N(X0;Y0)=2n, where
N(X0;Y0) denotes the number of pairs (X;Y) fulfilling the
equation, and ∑ is a modulo 2 summation. The sets if
indices X0;Y0 are called input and output masks.

The measure of linear approximation effectiveness is
the value of a probability ∆p = jp� 1=2j called differ-
ential probability. For a fixed n a measure of effec-
tiveness can also be defined as a value of ∆N(X0;Y0) =
= jN(X0;Y0)�2n�1j.
In our experiment we tested linear approximations of
6 x 6 S-boxes, i.e. functions Y = h(X) : ∑6 ! ∑6,
where sub-functions of function h were constructed bent
functions, randomly generated bent functions and random
functions (Fig. 3). The distribution of the best approx-
imations was tested, i.e. maximum value of ∆N(X0;Y0)
among all possible sets of input and output masks (ex-
cept empty output mask). For each type of functions
10 000 of random S-boxes were tested. The number
of S-boxes is given on Y (value) axis. The X (cate-
gory) axis gives the values of the best approximations
(higher value means better approximation so worse S-box).

Fig. 3. Best S-box approximation distribution. Constructed
(Rothaus) versus generated bent.

Differences between S-boxes build of bent functions con-
structed using Rothaus method (Method 2) and S-boxes
build from randomly generated bent functions are not very
evident.

6.2. Nonlinearity

Now we will show the results of testing the S-boxes for
high nonlinearity (Fig. 4). We consider 6 x 8 S-boxes (each
S-box is constructed of six 8-argument functions).
The nonlinearity of an S-box, so a function F : ∑n ! ∑m

such that F(x) =
�

f1(x); f2(x); : : : ; fm(x)
�

i x2 ∑n, is cal-
culated as minimal nonlinearity of all linear combinations
of F’s sub-functions. The nonlinearity of a S-box is then
defined as follows:

NF = min
�

NfJ
j fJ = ∑

i2J

fi ; J� (1;2; : : : ;m)
	
:

To calculate a nonlinearity of a single S-box 2m linear com-
binations have to be constructed and their distance to affine
functions calculated. The lowest of all calculated nonlin-
earities (distances to affine functions) is the nonlinearity of
the S-box.
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Fig. 4. S-box nonlinearity distribution. Constructed (Rothaus)
versus generated bent.

Among S-boxes built from generated bent functions there
exist S-boxes of the highest found nonlinearity of 104.
There is also about 20 times more S-boxes of very high
nonlinearity of 100 then in the case of S-boxes build from
constructed bent functions or random balanced functions.
This means that using randomly generated bent functions
may lead to constructing S-boxes of better cryptographic
qualities in less time.
However, one has to note the fact that in case of randomly
generated bent functions there are also S-boxes of relatively
poor nonlinearity (like 80). So building S-boxes from these
functions requires (more then in other cases) careful check-
ing the resulting S-boxes for possibly low nonlinearity.

7. Conclusions
From the results presented in this paper it seems that ran-
dom generated bent functions offer an interesting alternative
to construction methods. Not only nonlinear characteristics
of these functions are equal or better then those of con-
structed bent functions but also generated functions have
a very compact (small) algebraic normal form which can
be utilized for efficient storage and fast cryptographic rou-
tines.
Next step in randomly generated bent function assessment
will be checking their avalanche and propagation criteria,
also when incorporated into S-boxes.
Perhaps a combined method of ANF generation of rela-
tively short bent functions (i.e. n� 10) and then supplying
them as an input for deterministic construction can yield
some interesting results. Such functions would also have
to be tested to verify their possibly superior cryptographic
qualities.
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