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Abstract—A consistent particle filtering-based framework for

the purpose of parallel face tracking and recognition from

video sequences is proposed. A novel approach to defining

randomized, particle filtering-driven local face features for the

purpose of recognition is proposed. The potential of cumulat-

ing classification decisions based on the proposed feature set

definition is evaluated. By applying cumulation mechanisms

to the classification results determined from single frames and

with the use of particle-filtered features, good recognition rates

are obtained at the minimal computational cost. The pro-

posed framework can operate in real-time on a typical mod-

ern PC. Additionally, the application of cumulation mecha-

nisms makes the framework resistant to brief visual distor-

tions, such as occlusions, head rotations or face expressions.

A high performance is also obtained on low resolution images

(video frames). Since the framework is based on the particle

filtering principle, it is easily tunable to various application

requirements (security level, hardware constraints).

Keywords—biometrics, face recognition, particle filtering, video

analysis.

1. Introduction

1.1. Problem Statement

We consider an identification scenario with the use of

a video input signal. It is assumed that individuals enter-

ing the controlled zone cannot be effectively tracked over

the entire stay-in-the-zone period, e.g., due to the large

number of people walking along the main routes or due

to the complicated topography of the zone. However, mul-

tiple identity recognitions with the use of local cameras

installed in various locations around the controlled zone

are possible. Cameras are installed in a way that enables

frontal capture of subjects’ faces, i.e., at the average height

of a human and in specific places where frontal face im-

ages can be captured. Such places could be near paint-

ings in galleries, supermarket shelves, shop windows, ad-

vertising posters, mirrors, elevator exits, escalators, at the

ends of narrow corridors, etc. Based on multiple identifica-

tions, a rough track of an individual’s (sequence of visited

places) can be retrieved or an alarm can be raised when

the selected individual enters a prohibited area in the con-

trolled zone. It is assumed that the controlled zone is rel-

atively small, so that the number of individuals to identify

simultaneously is limited. Additionally, we assume that in-

dividuals who enter the controlled zone were previously en-

rolled to the system or are enrolled on entry. Consequently,

a closed-set identification scenario is considered.

The presented usage scenario may be primarily regarded as

tracking by identifying and is similar to the usage scenario

of the Face Cataloger from IBM [1], [2]. Both solutions

are used to answer the question who is where? within

the controlled zone. Information gathered from tracking

by identifying can be useful for warehouse, museum or

gallery management, since it permits assessment of the at-

tractiveness of the presented items. The application can

also be effectively used to control higher security regions

within the controlled zone, particularly, when two groups

of subjects are considered. such as, e.g., employees and

visitors. Unlike in the IBM’s Face Cataloger scenario, we

assume utilization of video-specific information not only for

the purpose of tracking but also for the purpose of iden-

tity recognition. Additionally, the Face Cataloger utilizes

a badge identification system for the purpose of subject

identification at the entrance. We do not utilize any exter-

nal systems and we assume low computational requirements

for the proposed framework.

1.2. Particle Filtering

Particle filtering is used as a basis for the proposed frame-

work and therefore it is shortly presented here. By defi-

nition, particle filters are sequential Monte Carlo methods

based upon point mass representations (particles) of proba-

bility densities. Such representations can be applied to any

state space model and generalize the traditional Kalman

filtering methods [3]. The key idea of the Monte Carlo

methods is to approximate a difficult analytical problem by

a much simpler problem represented by a statistical sam-

ple [4]. The stochastic nature of the Monte Carlo simulation

in computer environment is achieved by the use of pseudo-

random number generators. The Monte Carlo simulation is

considered to be one of the most influential and landmark

algorithms of the 20th century [5].

An implementation of the particle filtering principle – par-

ticularly well known in the computer vision research area –

is the Condensation algorithm of Isard and Blake [6]. The

Condensation is also utilized within our proposed frame-
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work. For the purpose of tracking, it requires at least two

models to be defined, namely the object model (usually

including object’s dynamics model) and the observation

model. Selection of the models is essential for performance

of the whole solution.

Probably the most practically useful property of the particle

filters is that they do not require any functional assump-

tions (linearity, Gaussianity, unimodality) about the den-

sities. Initial state density p(~x0) must however be given,

i.e., some initialization (e.g., initial face detection) must

be done. Common drawback of the particle filtering tech-

niques is a degeneracy problem, which consists in concen-

tration of most of the weight on a relatively small subset

of particles [3], [7], [8]. Full discussion of the particle

filtering and degeneracy problem can be found in the cited

literature.

Within the proposed framework, the particle filtering prin-

ciple is utilized for the purpose of face tracking with the

use of local face features (called primary face features), de-

fined as small face patches. Color distribution within these

features is analyzed for the purpose of tracking. For the pur-

pose of recognition, the frequency analysis of the features

is run. As a result, two types of secondary face features

are obtained from the primary face features, namely color

distribution- and frequency analysis-based secondary fea-

tures. Definitions of the secondary face features as well as

comments on selecting the primary features are given in

the next section.

2. Local Face Features

2.1. Primary Face Features

Typically, particle filtering-based trackers assume that

particle model is very similar (or identical) to the object

model. In the context of the proposed framework, it would

mean that particles are face candidate locations, and thus

the observation area associated with each particle is of

a size of the face candidate [9], [10], [11]. The final ob-

ject state vector would then be calculated as mean value

of all the particles. However, processing such big particles

is usually computationally expensive. Therefore we utilize

small particles (of a size between 10×10 and 40×40 pix-

els), which refer to local face patches and are understood

as primary face features. Such solution results in computa-

tional time savings per each particle at the cost of the more

complicated procedure of estimation of the whole face area.

Namely, face area cannot be straightforwardly determined

as the mean value of all particles. Instead, the distribution

of all particles in image space must be analyzed to obtain

rough face area estimation. For the case of many faces in

the scene, this must involve automatic clustering of the par-

ticle set. Finer face area estimations are retrieved with the

use of dust filtering procedure, which we proposed previ-

ously [12]. The dust filtering consists in classifying single

pixels as skin or non-skin pixels only within the initial,

roughly estimated face areas. The enhanced results of the

single-pixel-classifications are then used to determine face

areas more precisely. Details of the procedure of rough

face area estimation from the particle distribution and of

the dust filtering procedure can be found in [12].

Primary face features, i.e., particles are resampled accord-

ingly to the Condensation schema. Each nth primary fea-

ture has assigned a weight πn, which is used for the pur-

pose of resampling. Additionally, random diffusion and

deterministic drift are applied to steer the particle motion

in the image space. For the purpose of determining the

drift, a tracking history of the normalized face area loca-

tions (R̂(t), where t < 0) is stored. Predicting a new lo-

cation of the face area R̂(0) is based on a simple model,

namely

R̂(0) = R̂(−1)+ (R̂(−1)− R̂(−2))+ ε(0), (1)

where ε(t) is an i.i.d. zero-mean noise.

2.2. Secondary Face Features for Tracking

For the purpose of face tracking, primary face features (par-

ticles) must be resampled. This is done with the use of

color distribution features retrieved from the primary face

features and compared to a universal skin color model. Skin

color is a low level feature, which appears to be highly

discriminative and computationally fast. It is easy to un-

derstand and robust to geometrical changes. As many re-

search studies have shown, the skin tones of different eth-

nical groups differ mainly in their intensity values [13],

[14], [15], [16], [17], being clustered in chrominance val-

ues. This makes it possible to use a universal skin color

model to represent all skin types. Main disadvantage of

color features is that cameras are not able to distinguish

changes of the actual surface colors from changes caused

by varying illumination. Consequently, illumination is the

most influential factor, which changes color values recorded

by a camera. Lighting compensation techniques have been

proposed to reduce this problem [13], [18], [16].

In the proposed framework, color is the main cue used

for the purpose of tracking by particle filtering and for

the purpose of quick face normalization by means of the

previously proposed dust filtering method [12]. Due to

utilization of color features, real time processing can be

achieved with the use of a typical modern PC. We repre-

sent color distributions of the local face features as 64×64

bin hue-saturation (HS) histograms of HSV colorspace.

The V-channel (value/intensity) is ignored. We compare

the HS histograms of local patches to the reference skin

color model with the use of the Bhattacharyya distance

dn = dBhatt [pn,q], where pn is the HS histogram determined

from the nth particle and q is the reference color histogram.

The Bhattacharyya distance is defined with the use of the

Bhattacharyya coefficient ρ [p,q], which is a similarity mea-

sure between two color distributions p(u) and q(u), namely

ρ [p,q] =

∫

√

p(u)d(u)du. (2)
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In the context of discrete densities represented by his-

tograms p = {p(u)}u=1...64×64 and q = {q(u)}u=1...64×64,

the Bhattacharyya coefficient is defined as

ρ [p,q] =
64×64

∑
u=1

√

p(u)d(u). (3)

For two identical normalized histograms we obtain ρ = 1,

indicating the perfect match. The Bhattacharyya distance

dBhatt [p,q] is then defined as

dBhatt [p,q] = 1−ρ [p,q]. (4)

Particles (primary features) are then re-weighted accord-

ingly to the Condensation schema: the new weight πn of

nth particle is calculated as

πn = exp(−λ d2
n). (5)

We use value of λ = 20 as suggested in [9], [19].

2.3. Secondary Face Features for Recognition

Particles which are found to be located within the dust-

filtered face area, are then used for retrieval of secondary

features for the purpose of identity recognition. We de-

fine these secondary features as the discrete cosine trans-

form (DCT) coefficients of the respective primary features

(particles). Whereas the secondary features for the purpose

of tracking where retrieved from H- and S-channels of

HSV colorspace, the secondary features for the purpose

of recognition are calculated with the use of V-channel.

We selected the DCT coding mainly due to its ease of

application, known successful applications to face recog-

nition [20], [21], and the potential of introducing iden-

tity recognition mechanisms into the existing compression

schemes, which already utilize the DCT commonly.

Having precisely estimated the face area, relative location

of each primary feature within the face area can be re-

trieved and thus the corresponding feature in the template

can be found and compared against a given feature. This

means that – for the purpose of recognition – the features

are valid only in combination with their relative location

within face area. The combination of frequency and lo-

cation properties is similar to other existing face recogni-

tion approaches, where localization data is used in com-

bination with some transformed local features, e.g., elastic

bunch graph matching (EBGM) [22] or active shape mod-

els (ASM) [23]. However, in the previously known meth-

ods, features to be detected are precisely defined and the

feature detection is the most computationally expensive part

of these algorithms. In our proposed approach, we intro-

duce primary features into the particle filtering framework.

Consequently, the costly detection is skipped, randomized

feature locations are utilized and feature sets used for the

purpose of recognition differ from video frame to video

frame. Such feature sets can be easily processed in real

time, still providing good image exploration. Furthermore,

such definition makes it possible to employ low resolution

face images in which accurate detection of facial landmarks

is hardly achievable [24].

The main drawback of the proposed feature set definition

is that the set of stored template features should be exten-

sive. Since any feature locations (as a result of particle

filtering) can be achieved within the actually processed im-

age, features for all possible locations within the templates

should be pre-calculated. They might also be calculated

on-demand, but this would lead to the high extension of

the processing time. Furthermore, the face areas being pro-

cessed should be well aligned with the template images, so

that the actually corresponding features in the image and in

the template can be compared (precise alignment or feature

detection is an issue for all face recognition methods). For

the purpose of testing the proposed face feature set def-

inition approach, we utilized fast face normalization with

the use of the dust filtering. Additionally, sizes of faces in

test sequences were compliant with sizes of template face

images. As presented in next sections, this provided good

recognition rates at a low computational cost. Application

of more precise normalization procedures is expected to

further improve the recognition quality (at a higher com-

putational cost).

3. Recognition from Video

A video sequence provides more information in compar-

ison to a still face image. This information is distributed

over video frames, which have some relation to the real time

that passes during the video recording. Such distributed in-

formation can be cumulated in order to provide a stronger

decision than a single-frame (or still image) based decision.

The sequential hypothesis testing paradigm may be applied

for the purpose of identity recognition over a sequence.

The initial weak classifications become stronger when new

video frames become available. An input to the recogni-

tion module are dust-filtered face areas from the tracking

module. The tracking module provides consistency of the

track, i.e., it assures that consecutive faces passed to the

recognition module are correctly labeled as belonging to

a given individual (though the individual’s identity remains

unknown to the tracking module).

As described above, secondary features from each frame are

retrieved and compared to the respective secondary features

of the stored templates. For the purpose of comparison,

the DCT secondary features are zig-zag reorganized [25]

to form feature vectors. The feature vectors can then be

compared directly with the use of various distance metrics.

We evaluated L1, L2 and L∞ distances and L2 resulted in the

best performance. Therefore, it is used for the purpose of

performance evaluation further in this article. The distance

between DCT feature vectors is expressed as

dL2
(~x,~y) =

√

n

∑
i=1

(xi − yi)2, (6)

where ~x = [x1, . . . ,xn]
T and ~y = [y1, . . . ,yn]

T are DCT-

transformed feature vectors to be compared, and n + 1 is
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Fig. 1. Face image space and time exploration achieved by applying particle filtering to a talking head video sequence. Randomized

positions of particles in each frame provide image space exploration and determine a set of face features used for the purpose of

recognition. Single particle-related distances from each frame are cumulated to give a face-in-frame distance. Face-in-frame distances

are cumulated to obtain a face-in-sequence distance. Sample video frames used for the presented processing were taken from [26].

the length of the feature vector (including 0 indexed co-

efficient). The DCT coefficient indexed 0 represents the

average of the image patch and therefore is ignored for the

purpose of recognition.

3.1. Cumulation of Classification Results

A result of comparing the particle-related local features is

a set of distance measures between those features (retrieved

from a given face image) and corresponding features of

a template. These measures can be cumulated in order to

provide a distance between the whole face area and the tem-

plate, later referred to as the face-in-frame distance. The

face-in-frame distance is simply calculated as an average

of particle-related distance measures taken for only those

particles which fall within the normalized face area, namely

D(F,T ) = avg(all dL2
(~x, ~xT ) : x ∈ F) , (7)

where ~xT is a DCT feature vector in template T corre-

sponding to DCT feature vector ~x retrieved from a given

face image F , and x is a particle (primary feature) from

which ~x is determined.

Face-in-frame distances are then cumulated for the purpose

of comparing the whole sequences of faces against given

templates, resulting in face-in-sequence distances. Conse-

quently, it can be concluded that distance cumulation is

applied at two different levels:

• Space level: cumulation of distance values (scores) of

particle-related local features (distributed over a face

image) in order to obtain a single face-in-frame dis-

tance.

• Time level: cumulation of face-in-frame distance val-

ues (distributed over a video sequence) in order to

obtain a face-in-sequence distance.

Comparisons of local features can also be understood as

weak local classifications, which are then cumulated to

provide stronger frame-related classifications (face-in-frame

distances). Cumulation of frame-related distances pro-

vides yet stronger classification of video sequences (face-in-

sequence distances). Face image space exploration is a re-

sult of the integrated framework by which the probabilistic

nature of the particle filtering-based tracking is passed to

the recognition task. Consequently, more face image space

can be explored and tested for the purpose of recognition

without significantly increasing the processing burden. Two

levels of distance cumulation within the proposed frame-

work are depicted in Fig. 1. The face-in-sequence distances

are then utilized for the purpose of recognition, which is

done by building a ranking of identities. Since we consider

a closed set scenario, all stored templates are compared

(scanned) against the actually processed face image and

the ranking is determined.

Integration of the tracking and recognition within one

framework brings additional advantage, namely identity cue

can be used for the purpose of tracking corrections. In

case of processing multiple faces in the scene, some face-

to-track assignment conflicts occur. A feedback from the
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recognition module can additionally support conflict reso-

lution mechanisms and thus improve tracking accuracy. We

described this idea in [27].

3.2. Multi-Image Template

Quality of a template has a great influence on the overall

recognition performance. The template quality can be im-

proved by using more than one image for template creation.

The simple template extension technique, which directly

uses several images to create a multi-image template, can

be used: the query face image F is compared to each image

of the multi-image template T ∗ and the best match between

the query image and template image is selected as the ac-

tual face to multi-image template distance D∗, namely, for

K-image multi-image template

D∗(F,T ∗) = min
1≤k≤K

D(F,T ∗
k ), (8)

where T ∗
k is kth image of the multi-image template and D is

the face-in-frame distance calculated between the given face

and a single template image. Performance improvement

achieved by extending the template representation and with

the use of the simple comparison procedure is analyzed in

the following sections.

4. Definition of the Framework and Its

Parameters

4.1. Testing Environment

For the purpose of testing the performance of the proposed

framework, we used 55 video sequences of the Open Video

Project (OVP) [26]. The downloaded sequences are talk-

ing heads videos of different individuals. The length of

sequences varies from 851 to 8265 frames. Talking head

Fig. 2. Variations in test video sequences from Open Video

Project [26]. Test videos are frontal and almost-to-frontal talking

head sequences without any additional constraints on the individ-

ual’s head motion and facial expression. Variations in head size,

video quality and background type are noticeable.

videos of 35 different individuals have been extracted, re-

sulting in 100 to 1187 talking head frames per individual

(340 talking head frames per individual on average). Talk-

ing head sequences contain frontal and almost-to-frontal

shots (less than 30 degrees profile) without any extra con-

straints on the individual’s head motion or facial expres-

sion. Changes in captured head size due to camera zoom

or head motions are present. A few sample frames from

the test video sequences are presented in Fig. 2.

It is to notice that – since we consider a sequential recog-

nition from video sequences – the beneath reported cumu-

lative match characteristics (CMC) are cumulated not only

over identities but also over sequence time. For example,

the 80% 1-rank identification rate means that the actual

subject identity was returned in the first position in the

ranking for 80% of the time (video frames) in all test se-

quences. Various aspects of the proposed framework have

been evaluated and the results are presented beneath.

4.2. Optimal Feature Vectors

Selection of DCT coefficients for the purpose of building

feature vectors for identity recognition can influence the

overall recognition performance. The DCT coefficients se-

lection is related to the question of how much identity-

specific information is carried by various signal frequen-

cies. Ekenel and Stiefelhagen [28] showed that selection of

the number of coefficients influences performance and that

extending this number over a certain limit does not signifi-

cantly improve performance. Sanderson et al. [29] showed

that increasing the dimensionality from 15 to 21 provides

only a small recognition improvement, while it significantly

increases the computational requirements.

In order to find an optimal set of DCT coefficients we

run several tests for the closed-set scenario on the full test

database, but with the use of different feature vector def-

initions. The testing was done with the use of the whole

proposed framework. Although all framework parameters

will only be introduced hereinafter, we think it is reason-

able to present the results regarding selection of the DCT

Table 1

Influence of the number of DCT coefficients

on the identification rates obtained for full database

testing in the closed-set scenario

Indexes of selected Identification rate [%]

DCT coefficients 1-rank 5-rank 10-rank

1-5 66.64 79.49 85.66

1-10 65.15 79.15 86.21

1-15 64.16 78.92 85.70

1-20 62.16 77.50 84.74

1-25 60.48 76.54 83.89

6-15 41.24 60.27 74.74

16-25 22.70 44.58 59.92
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coefficients here. For the purpose of this testing fixed par-

ticle positions were used, so that the results of different

test runs (for different feature vector definitions) are com-

parable. The identification rates obtained with the use of

differently defined feature vectors are gathered in Table 1

and depicted in Fig. 3.

Fig. 3. Influence of the feature vector definition on CMCs ob-

tained from full database testing in the closed set scenario.

The obtained results show that lower frequencies (low co-

efficient indexes) contain most of the identity-related in-

formation. Extending the feature vector by higher frequen-

cies does not improve the performance significantly and ex-

cluding lower frequencies drastically reduces performance

quality. It can also be observed that differences between

the cases of 1-5, 1-10, 1-15, 1-20 and 1-25 are minor.

However, in the literature [30], [28], [29], it is rare that

as few as five coefficients are suggested. We finally se-

lected DCT coefficients 1-10 to be used as the local feature

representation in our framework. Such a definition results

in good recognition performance and keeps the represen-

tation compact and is used for the evaluation presented in

the following sections. It is to comment that before cal-

culating the DCT coefficients, contrast of the whole face

area (in a given frame and in a template) is enhanced by

the histogram equalization technique, which improves sys-

tem performance [28]. No other illumination compensation

techniques are applied.

4.3. Face-in-Sequence Scoring and Classification

Having obtained face-in-frame distances against a set of

templates, a cumulated distance for the video sequence,

i.e., face-in-sequence distance, can be obtained. Cumula-

tion of the distances can be done in the following ways:

• Fixed lag cumulation. Face-in-sequence distance is

based on the distances of n previous frames (cumu-

lation lag = n). Results are available at any ith frame

(time) of the sequence, such as i > n.

• Fixed point (growing lag) cumulation. Face-in-

sequence distance is based on all previous frames.

Results are available at any frame of the sequence.

• Adaptive lag cumulation. Face-in-sequence distance

is based on the varying number of previous frames.

Results may be available at any frame of the sequence

(but with different strength) or when a given minimal

number of frames is available.

In all cases previous frames must be understood as face

areas retrieved from previous frames and with reference to

a given track.

In order to achieve good classification when large lag val-

ues are used (a high number of previous frames is consid-

ered), it must be ensured that tracks are consistent, i.e., the

subject-track pairs are not swapped during tracking. Oth-

erwise, classification of a sequence (track) containing face

images of various subjects will be dominated by the pre-

vailing subject. In consequence, application of the fixed

point scoring is not appropriate for high security scenarios

and should rather be applied to other non-security scenar-

ios, e.g., for the purpose of video summarization [31]. For

security applications, utilization of the fixed or adaptive

lag is more appropriate. The lag value does not only in-

fluence classification strength, but it also defines response

delay (e.g., updating identity classification result or raising

an alarm), when the subject identity within a track changes

(which, first of all, may be a result of tracking error). Re-

sponse delay can also be understood as a resistance to brief

misclassifications: the higher the lag value, the more the

duration of the misclassification (e.g., caused by occlusion)

will not affect classification result. The trade-off between

a quick response to identity change and the resistance to

misclassifications is actually the problem of tuning a bio-

metric system to achieve optimal false acceptance and false

rejection rates (FAR and FRR). An optimal solution does

not seem to exist in general and should be found with re-

spect to application specific requirements, such as security

level, environmental conditions, input video quality, usabil-

ity requirements, hardware requirements (e.g., memory re-

quirements for storing previous frame distances). It may

be concluded that optimally the lag value should change

within some predefined range [lagmin, lagmax]. The value of

lagmin should be derived from the required minimal clas-

sification strength and misclassification-resistance, whereas

lagmax should be derived from maximal acceptable response

delay.

Level of the face-in-frame distances is dependent on the

input frame conditions, such as e.g. head rotation or frame

quality. It means, that though the ranking of identities can

be preserved between the frames, the absolute level of dis-

tance values can vary strongly and influence the cumulated

distance. Therefore, for building the cumulated rankings,

a distance value normalization is required. For this pur-

pose we utilize min-max normalization of face-in-frame

distances, namely

D′
FT =

DFT −DFmin

DFmax −DFmin

, (9)
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where: DFT = D(F,T ) is the calculated (unnormalized)

distance between frame F and template T , D′
FT is the nor-

malized frame-to-template distance, DFmin
and DFmax are

respectively minimal and maximal distances between the

given frame F and any template from the template set. As

a result of normalization the values of D′
FT within the range

of [0,1] are obtained.

4.4. Occurrence of Classification Errors

During evaluation we have observed that erroneous or

weak classifications are usually a result of distortions in

video sequence. In such cases most of the templates seem

to be almost equally distant to the given frame. In other

words, the given frame is not particularly similar to any

given template. On the other hand, if the recognition is

strong, there are usually only a few good matches be-

ing clearly separated from others. This effect is illustrated

in Fig. 4.

Fig. 4. Local distortions in video cause face-in-frame distance

values to gather around an average value. In good quality frames,

best-matches are clearly separated from other matches. Here dis-

tortions are caused by digital storage medium errors.

Based on this observation it may be concluded that strong

classifications are possible when the subject’s face in the

video can be seen well. Since bad matches are similarly

bad for all the templates, distance value cumulation should

enable the brief erroneous classifications to be overcome

when a longer period of time is considered.

5. Distance Value Cumulation

Mechanisms

5.1. Utilizing Video Sequentiality

By video sequentiality we mean the high dependency of

a video frame on previous frames. It may be informally

said that almost every video frame is very similar to the

preceding frame. In the identity recognition context the

sequentiality may be utilized to overcome brief misclassi-

fications, since an identity recognized in a given frame is

very likely to have also appeared in previous frames. This

property can be utilized by applying a cumulation mecha-

nism, i.e., ranking the identities of each video frame with

respect to previous frames. A simple approach is to use

the sum of face-in-frame distances on a lag of k previous

frames as a cumulated distance. Namely, the cumulated

distance Dcum for the jth frame Fj of the sequence against

a given template T on a lag of k previous frames is de-

fined as:

Dcum(Fj,T ) =
1

k

k−1

∑
i=0

D(Fj−i,T ). (10)

Implementing the cumulation mechanism results in a higher

recognition rate (as calculated per every video frame). Sim-

ilarly, extending template representation from one image to

a three image multi-image template increases recognition

rates. The observed performance improvement is summa-

rized in Table 2 and depicted in Fig. 5. It is observed that

increasing the template quality improves the performance

more than introducing cumulation mechanism only.

Table 2

Identity recognition improvement obtained as a result

of introducing cumulation mechanism (with lag L = 10)

and extending template representation: 1-rank

identification rates presented

Solution
1-rank

ident. rate [%]

One-image templates, no cumulation 34

One-image templates with cumulation 41

Three-image templates, no cumulation 50

Three-image templates with cumulation 61

Fig. 5. Identity recognition improvement obtained as a result of

introducing cumulation mechanism (with lag L = 10) and extend-

ing template representation: CMCs depicted.

5.2. Cumulation Schemes

Fusion of face-in-frame distances can involve a simple sum

rule or can be combined with extra distance value transfor-

mation. Let us denote D as the original distance determined
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by scoring a given face-in-frame and D′ as the distance af-

ter transformation. We propose and evaluate the following

transformation methods:

– linear mapping D′ = D , (11)

– square root transformation D′ =
√

D , (12)

– quadratic transformation D′ = D2 . (13)

Linear mapping is used by a basic sum rule approach: it

corresponds to a simple summation of all frame distances

over the sequence. Square root and quadratic transforma-

tions are meant to emphasize Eq. (12) or de-emphasize

Eq. (13) differences between similarly good matches. As

described above, all face-in-frame distances are min-max

normalized before applying transformations of Eqs. (11),

(12), (13).

CMCs for different fusion approaches with the cumulation

lag of L = 10 and three-image template representations are

depicted in Fig. 6. The best performer, namely the square

root fusion approach, achieved 1-rank identification rate

of 61%, 5-rank rate of 77% and 10-rank rate of 85%.

The simple sum rule (linear mapping) performed almost

equally well.

Fig. 6. CMCs obtained with the use of different fusion schemes,

cumulation lag of L=10 frames and three-image template repre-

sentations. Application of cumulation mechanisms significantly

improves performance in comparison to the non-cumulation ap-

proach.

It is again observed that application of any cumulation

mechanism improves the recognition performance signif-

icantly in comparison to single frame based identification.

It is also concluded that the simplest summation rule may

be optimal solution, since differences in performance qual-

ity between simple rule and square root fusion are minor.

5.3. Definition of the Cumulation Lag and the Influence

of Input Video Frequency

During evaluation it was discovered that defining the cu-

mulation lag by the number of frames was confusing – it

is rather the time period which should be defined as a cu-

mulation lag. Time-based definition of the cumulation lag

remains independent of video frequency, unlike definition

by number of frames. Time-based definition describes the

admissible range of appearance changes better than does

the number of frames. We observed that given a time de-

fined cumulation lag, changes in recognition performance

caused by different input video frequencies are minor and

can be disregarded. In other words, the most influential

factor on identification rates is the period of distortions in

video in relation to the cumulation lag (i.e., how long can

distortions maximally last), and this property is easier to

describe by defining the cumulation lag in time units.

5.4. Optimal Lag Value Selection

Selection of the lag value L determines the recognition per-

formance of the system and its response-delay to the iden-

tity change of the observed individual. Choice of an optimal

lag value is application-specific but a general policy can be

defined:

• For high security the lag value should be low to pro-

vide a quick response.

• For high user-friendliness the lag value should be

higher to minimize the number of false rejections.

To evaluate influence of the lag L on the overall perfor-

mance, we evaluated the proposed framework with the use

of various cumulation lag values. Lag L= 1 is equivalent

to the case with no cumulation mechanism. For this config-

uration the 1-rank identification rate of 50% was obtained,

which confirms the weak nature of the used frame clas-

sifier. For a cumulation lag equal to 8 s (200 frames)

1-rank identification rate of 81%, 5-rank identification

rate of 90% and 10-rank identification rate of 93% were

obtained. CMCs for various cumulation lag values with the

use of the square root fusion approach Eq. (12) are depicted

in Fig. 7.

Fig. 7. CMCs for the square root fusion approach and various

cumulation lag values L. Increasing the L value improves recog-

nition performance. Graphs for 25 fps sequences.
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The obtained results confirm expectation that extending the

cumulation lag improves the recognition performance of

the framework. It is also observed that cumulating only

a few previous frame distances improves performance sig-

nificantly. The more frame distances are already cumulated,

the less influence on performance is observed by adding

new distances. It is however to remember, that no track

swapping errors were considered during this test: i.e., an

indexed track have never skipped to another individual

(assumption of tracks consistency). In the target applica-

tion, as mentioned previously, not only recognition rate, but

also response delay must be considered when selecting the

optimal lag value.

5.5. Fixed Point Approach

Increasing the lag improves recognition performance. As

a result, it may be expected that the fixed point (growing

lag) cumulation approach would provide higher identifica-

tion rates. The drawbacks of this approach, as described

previously, include the risk of high response delay when

a tracking error occurs. For the purpose of testing the

progress of identification rate in fixed point approach we

extracted a subset of 100-frame long sub-sequences from

the testing database. Rank 1 and rank 5 recognition rate

changes observed over frames of the extracted video se-

quences are depicted in Fig. 8.

Fig. 8. Rank 1 and rank 5 identification rates over 100-frame

sequences with the fixed point cumulation approach (all previous

frame distances considered).

From the results it can be concluded that extending the

cumulation lag does not need to be indefinite. In early

processing steps, as the cumulation lag value is low, the

recognition performance increases rapidly with new frames.

Later on however, as many previous frames are already con-

sidered, the cumulated score becomes saturated. This leads

again to the idea of utilizing an adaptive lag as the most

practical approach. It should be remembered that this test

was run with sub-sequences of the original testing database,

therefore the reported results vary from those presented pre-

viously for the whole database.

5.6. Processing Times and Further Enhancements

The proposed framework was tested on an Intel Core 2 Duo

E6750 computer, 2.67 GHz with 2.00 GB RAM. Process-

ing times were tested in a whole framework combined with

a detection module, which is not described in this paper and

which initializes the tracking process. The detection, track-

ing and normalization functionalities were implemented in

the Visual C++ environment and with the use of OpenCV

1.0 library [32]. The recognition module was implemented

in Matlab 6.5. No special code optimization was applied.

Processing times were calculated for the following con-

figuration parameters and environmental conditions: in-

put video frame of size 320×240 pixels, particles of size

8× 8 pixels, normalized face areas of size 64× 64 pix-

els, face detection by Haar-like face detector [33], generic

skin color model represented by 64×64 hue-saturation his-

togram, face area normalization by means of dust filtering

with pixel-step equal to 4, 10-subject closed set identifi-

cation scenario, three-image template representations, one

person in the scene.

In the basic configuration, 335 ms per frame were needed to

run all the tasks of detection, tracking and recognition with

the use of 50 particles. Face detection was the most time

consuming task – tracking and recognition itself needed

85 ms per frame on average. Frame preprocessing, which

involved data retrieval from the video buffer and transfor-

mation from RGB to HSV colorspace, required 3 ms of the

processing time.

Some process optimizations, which should further reduce

computational requirements, are possible. First of all, face-

in-frame to template comparisons are currently realized by

linear scanning of the whole set of templates. Therefore,

the recognition processing time is proportional to the num-

ber of subjects in the database. Effective indexing and

sorting techniques are subject to further research with the

aim of ensuring that a quick search during identification

can be carried out.

Additionally, average cost of face detection can be reduced

by minimizing the frequency of running the detection pro-

cess. The detection can be, for example, triggered by an

external event, such as door open etc. Furthermore, track-

ing and recognition do not need to operate on every single

frame, but can wait until detection is finished. This would

result in the longest processing time per frame of 250 ms

occurring during the detection phase. After detection, the

whole frame processing would require 85 ms (tracking and

recognition only) – this means that a speed of 11 fps can

be achieved and 5 fps is regarded as sufficient for handling

normal head motions [34]. For the purpose of detection

in a testing environment the frontal face detector and pro-

file face detector were utilized. Profile detection involved

horizontal mirroring of the whole frame. Reducing de-

tection to frontal faces only can save 190 ms of proces-

sing time.
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Consequently, simultaneous frontal face detection, track-

ing and recognition in every frame results in a process-

ing speed of more than 6 fps. A lower accuracy in detec-

tion may be accepted for many applications, in particular

due to utilizing video as an input signal: in many prac-

tical cases it may be reasonable to invoke detection less

accurately (i.e., detecting frontal faces only), but more

frequently. Detection by tracking approach [12], [35] can

also be utilized to further reduce processing times. Achiev-

ing the optimal architecture of the modules (sub-processes)

is, however, a non-trivial and application-specific issue.

The advantages of using the distributed hardware architec-

ture should be considered for the proposed framework. Due

to construction of sub-processes, detection can be easily re-

alized by other processing units than tracking and recogni-

tion. Separating tracking and recognition between different

processing units is also possible. In the distributed envi-

ronment each process would run independently and retrieve

required data from the supporting process (e.g., tracking

from detection or recognition from tracking). A further de-

gree of parallelization could be achieved by computing the

DCT for various particles on separate units.

6. Conclusions

We proposed and evaluated a consistent particle filtering-

based framework for face tracking and recognition from

video. Presented results proved that sequentiality of the

video signal can be effectively used for the purpose of in-

creasing identification rates. This is achieved by applying

distance cumulation mechanisms. Even utilization of weak

classifiers, which result in the 1-rank identification rate of

50% when no cumulation mechanism is applied, can lead

to 1-rank identification rate of 81% when a cumulation lag

of 8 s (200 frames) is used. The strength of the classifi-

cation increases as more frame distances are collected for

the purpose of classification. The classification result is

available at any video frame, so it can be obtained even at

early steps of the sequence processing, though with lower

accuracy. The number of previous video frames used for

the purpose of classification, i.e., the cumulation lag, can

be adapted to the needs of a particular application.

The proposed particle filtering-based determination of lo-

cal face features enables good exploration of a face space

over a video sequence and results in high recognition per-

formance, while keeping computational requirements at

a modest level. Consequently, real-time processing can be

achieved on an ordinary modern PC. The trade-off between

quality and computational requirements can easily be opti-

mized for the purpose of specific applications by tuning the

number of particles. Additional tuning is possible by adapt-

ing the cumulation lag to given environmental conditions

or application requirements.

A particle filtering-based definition of a face feature set, in

combination with cumulation mechanisms, is resistant to

small rotation- and expression-caused appearance changes.

It also provides good recognition performance from low

resolution input videos and performs well in combination

with fast dust filtering-based face normalization (in low

resolution videos, precise classical normalization, such as

that based on eye positions, is often not possible at all).

The proposed system opens new fields for future research.

One of the most promising directions is integration of

our solution with speaker recognition technology. Both ap-

proaches can operate on data retrieved from talking head

video sequences, provided that voice is recorded. The in-

tegration should ensure mutual support between face-based

and voice-based recognition, in particular in cases when

one of two signal sources becomes unclear or temporar-

ily unavailable. Hardware focused research should also be

conducted in order to examine the advantages of the par-

allelizing sub-processes of the proposed system, and thus

decrease the overall processing time. Additionally, research

on the usage of particle filtering-determined (randomized)

feature sets for the purpose of recognition in other scenar-

ios, including recognition from still images, should pro-

vide interesting conclusions for applications with limita-

tions on processing time. In-depth examination of distance

fusion schemes – both at the frame level and sequence

level – could bring further performance improvements. The

possibility of using other classifiers (instead of Euclidean

distance-based one) to determine face-in-frame distances

should be examined. Other secondary feature representa-

tions (apart from DCT), e.g., derived from training-based

methods, such as the PCA, should also be evaluated within

the proposed framework.
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