
Paper On Dimensioning and Routing
in the IP QoS System

Witold Góralskia, Piotr Pydab, Tomasz Daleckib, Jordi Mongay Batallaa, Jarosław Śliwińskia,
Waldemar Latoszekc, and Henryk Gutc

a Warsaw University of Technology, Warsaw, Poland
b Military Communication Institute, Zegrze, Poland

c National Institute of Telecommunication, Warsaw, Poland

Abstract—This article presents dimensioning and routing so-
lutions in IP QoS System designed during the implementa-
tion of the PBZ project: “Next Generation Services and Net-
works – technical, application and market aspects: Traffic
management – IP QoS System”. The paper presents the func-
tional architecture together to the description of the functions
and methods implemented in the system.

Keywords—IP QoS System, resource dimensioning, routing.

1. Introduction

The architecture of the IP QoS System and traffic control
mechanisms have been specified during the PBZ project1

and the implemented prototype has been tested in the
testbed network. The proposed architecture of the IP QoS
System is compatible with the next generation network ar-
chitecture (NGN). Moreover, in terms of quality of service
(QoS) assuring, this implementation is compatible with the
differentiated services architecture (DiffServ) [1]. Figure 1
shows the IP QoS System architecture with implemented
functional modules.
The proposed solution relates to resource management
layer, which main objective is to separate the traffic sub-
mitted to the four classes of service (CoS): real time, mul-
timedia streaming, high throughput data and standard. The
resource management implemented in IP QoS distinguishes
three basic processes directed to prepare the network for as-
suring guaranteed service for the new requests:

– resource dimensioning process between edge routers,

– routing process on the basis of QoS requirements,
i.e., QoS-aware routing,

– resource reservation process for new call requests that
takes into account quality of service requirements.

These processes we implemented by the following mod-
ules: routing management (ROMAN), resource manage-
ment subsystem (RMS), policy decision – physical en-
tity (PD-PE), transport resource control (TRC) and policy
enforcement – physical entity (PE-PE). ROMAN module

1This work is partially funded by Polish Ministry of Science and Higher
Education, under contract number PBZMNiSW-02-II/2007 “Next Gener-
ation Services and Networks – technical, application and market aspects”.

is responsible for routing in the network. It should be
noted that the testbed network implements multiprotocol
label switching traffic engineering (MPLS TE) tunnels for
carrying traffic of given CoS. ROMAN module sets the
path and creates TE tunnels between each pair of edge
routers. In the project framework we implemented and
tested different routing algorithms for TE tunnels config-
uration. Besides standard algorithms additional extended
Dijkstra’s algorithms have been implemented. ROMAN
forces the TE tunnel in the routing algorithm by entering
the command: ip explicit-path with specified intermediate
nodes. After configuring tunnel, the module writes the in-
formation in a database and provides the information to the
RMS module with the list of tunnels. The RMS module
performs resource allocation and resource dimensioning,
which depend on available resources and matrices of traf-
fic demands, respectively. The primary task of the RMS
module is to determine the link capacity and buffer size for
each class of services inside a single domain. The resulting
capacity and buffer size are set in the edge router and are
the parameters used by the call admission control (CAC)
function.
The article describes the implementation of modules re-
sponsible for proper router configuration within the testbed
network. The main objective of the paper is to describe
the specification as well as implemented algorithms of the
modules responsible for dimensioning process and config-
uration of MPLS paths. Moreover, we describe how the
different modules cooperate with each other and exchange
data. The theoretical description comes with exemplary
configuration results taken from the testbed network of the
IP QoS System. In the conclusion, we summarize the
achievements of the implementation of the system by de-
scribing the presentation of IP QoS System testbed on na-
tional exhibition, and propose system extensions for further
development.

2. Functions of IP QoS System Modules

2.1. ROMAN Module

ROMAN module is responsible for the implementation of
the routing process in testbed network that is compatible
with the DiffServ architecture [1]. In DiffServ networks,

21

Witold Góralski, Piotr Pyda, Tomasz Dalecki, Jordi Mongay Batalla, Jarosław Śliwiński, Waldemar Latoszek, and Henryk Gut

Fig. 1. Architecture of the IP QoS System.

edge routers support functionalities for single streams and
core routers are aware only of aggregated traffic in proper
CoSes. Testbed network implements MPLS TE tunnels for
routing packets belonging to different CoS. Edge routers
add and remove MPLS labels for incoming and outgoing
packets, respectively. MPLS TE tunnels, or briefly TE tun-
nels, are defined by the so-called label switched path (LSP).
To configure the LSP it is required to specify subsequent
nodes from source to destination router. Routers in the
MPLS network make forwarding decisions based on their
label forwarding instance base (LFIB) tables. These ta-
bles contain labels which corresponding input and output
interfaces. The paths on which are established the tunnels
are determined using a routing algorithm implemented in
ROMAN module. ROMAN task is to determine paths and
create TE tunnels between each pair of edge routers for
traffic classified into proper CoSes. DiffServ architecture
assumes that the individual streams of packets sent by ap-
plications in the backbone are aggregated into streams of
particular CoSes. In DiffServ architecture routers analyze
DSCP field in IP headers, and on this basis are handled
with appropriate CoS. Packets belonging to the CoSes in
the MPLS network are distinguished on the basis of the
value of EXP field in MPLS header (see Fig. 2).

Fig. 2. MPLS header (4 Bytes length).

For this reason we defined mapping between DSCP code
values and EXP values of the MPLS header. Method of
mapping DSCP codes for aggregated CoSes into MPLS
EXP codes is shown in Table 1 [2]. The table is filled in
accordance with the EXP-inferred-PSC LSP (E-LSP) model
proposed by the IETF [3]. Each router configures per hop
behavior (PHB) rules for packets with different EXP field’s
values. It is possible to do static mapping in the domain
but it should be the same in the whole network.

Table 1
Mapping between DSCP in IP QoS System

and PMLS EXP field [2]

Type of
End-to-end Class of service

MPLS
application

class of in IP QoS DSCP
EXPservice project

Signaling Signaling Signaling 101000 101
VoIP Telephony Real time (RT) 101110 100
Interactive

RT interactive 100000games

Video on
MM streaming MM streaming

011010

demand
011100 011
011110

High High 001010
010

FTP throughput throughput 001100∗
001∗

data data 001110∗

Standard Standard (STD) 000000 000
∗ DSCP codes and MPLS EXP field used for HTD class of service.

In the project we assumed that the capacity of all the links
in the core network is divided into different classes of ser-
vice. This division is determined by the RMS module, ac-
cording to the maximum allocation model (MAM) method

22

On Dimensioning and Routing in the IP QoS System

described in [4]. The main advantage of the model is its
simplicity and, in turn, the model ensures the achievement
of isolation between traffic.
ROMAN module performs the following functions:

– retrieves information about the network topology,

– sets required capacity (CQoS) for proper classes of
service,

– establishes MPLS TE tunnels,

– provides information about the topology and TE tun-
nels to the RMS module.

We assume that the input data for ROMAN module is infor-
mation about current network topology, link capacity and
required capacity for CoSes stored in the database. Module
retrieves information from one of the router of the network,
since all the routers in the network use the OSPF routing
protocol [5] and gather information about network topol-
ogy. In our implementation it is possible to load the status
of the network from extensible markup language (XML)
configuration file. Due to resource dimensioning model,
the value of required capacity for proper CoS cannot be
greater than constraint (1):

CQoS ≤
Cmin

LRD −1
, (1)

where:
Cmin – minimal access link capacity,
LRD – number of edge routers.

CISCO routers use PCALC algorithm for MPLS TE tun-
nels establishment. This algorithm discovers the paths in
the network and provides data for explicit route object
(ERO) field used in RSVP-TE signaling structure. The
proposed solution implemented and tested different rout-
ing algorithms for TE tunnels configuration, therefore re-
placement of PCALC algorithm was mandatory. In addi-
tion to standard algorithms such as Dijkstra and Kruskal,
additional algorithms have been implemented like extended
Dijkstra’s described in [6] and self-adaptive multiple con-
straints routing algorithm (SAMCRA) described in [7], [8].
ROMAN configures TE tunnels by entering the command:
ip explicit-path with specified intermediate nodes. After
configuring the tunnel, the module writes information in
the database and provides list of tunnels to the RMS mod-
ule. Additional implementation details are presented in
Section 3.

2.2. RMS Module

RMS module is responsible for implementing the algorithm
for resource dimensioning and allocation, depending on
available resources and demands in the domain. Perform-
ing these tasks requires communication with the ROMAN
and PD-PE modules. In the prototype we implemented
a simplified static version of resource allocation algorithm.

The primary task for RMS module is to determine the ca-
pacity allocated for each class of service in every edge

router (ER) of the domain. This capacity is used by call
admission control function implemented in the TRC-FE
module. In addition, the RMS module sets the buffer size
in appropriate port for respective classes of service in ac-
cordance to [2].
RMS module receives notification from ROMAN module
about changes in network topology. The notification itself
does not provide information about new network topology
and is the responsibility of the RMS to achieve this in-
formation in a pull mode from the ROMAN. Additionally
RMS module can be notified that paths has been changed
in network by ROMAN module. Like the previous notifica-
tion, it does not provide additional data structures, therefore
the RMS module retrieves structure with up-to-date paths
in the network from ROMAN module.
RMS module allocates bandwidth for all classes of service
in a chosen path (MPLS TE tunnel). Additionally module
allocates bandwidth for the MPLS tunnels that pass through
particular link. In addition, buffer sizes are set in each
output port and for each class of service (ports through
which at least one path passes). The results obtained from
the resource allocation algorithm are used in the admission
control algorithm.
To describe the algorithm we introduce the following vari-
ables and constants:

l = 1 . . .L, link number (L ≡ number of links),

s = 1 . . .S, path number (S ≡ number of paths),

k = 1 . . .K, CoS number (K ≡ number of CoS),

Cl ≡ capacity of link l,

δls = 1 if path number s contains link number l, other-
wise δls = 0,

M[k,s] ≡ matrix of demands including demands for
CoS number k in path s.

In particular, the algorithm allocates resources for the
classes of service and convert relative input matrix of de-
mands into absolute matrix of demands describing the ex-
act bandwidth for each path and class of service. When
for all classes and paths are the same demands then input
elements of the matrix are equal to 1.
After running the algorithm, the output matrix contains the
bandwidth requirement for each path and class of service.
Then, we calculate the value of bandwidth Ckl for router
output port of link l and class of service k according to the
formula:

Ckl = ∑
s

M[k,s] δls . (2)

After calculating the bandwidth values for different classes
of service we calculate buffer sizes. The length of the
buffers allocated for each class depends on the used routers.
For example, Cisco routers used in the prototype allowed
to work with no more than 64 packets total buffer size for
all classes of service. The results presented below take into
account this limitation.

Signaling class: Resource dimensioning for signaling traffic
is quite complicated. Recent studies showed that a single
procedure call statement in the exemplary architecture of

23

Witold Góralski, Piotr Pyda, Tomasz Dalecki, Jordi Mongay Batalla, Jarosław Śliwiński, Waldemar Latoszek, and Henryk Gut

next generation networks needs around 30 kbit/s. If we have
reserved bandwidth CSIG for signaling traffic, then we can
allow CSIG/30 connection set-up procedures. One proce-
dure connection request, sends simultaneously N messages
to the network. In order not to loose signaling packets, the
buffer size for signaling CoS should be calculated accord-
ing to the following formula:

BSIG =
CSIG [kbit/s]

30 [kbit/s]
N [packets] . (3)

RT Interactive class: Buffer size for this class must take
into account maximum values of delay variation (IPDV)
according to the following formula:

IPDVRT [s] =
BRT ×dRT [B/packet] 8 hop

CRT [kbit/s]
, (4)

where:

dRT – the largest packet length of all RT streams,
hop – the number of hops on the longest path,
BRT – buffer size for RT class,
CRT – allocated bandwidth for RT class.

MM streaming and HTD classes of service require small
packet loss [2]. Therefore, the buffer size should be large
enough to minimize the number of lost packets belonging
to these classes of service. On the other hand, while there
is no requirement for delay variation the requirement for
packet transfer delay (IPTD) is 0.5 s for end-to-end de-
lay [2].
The delay and packet loss levels depend on the load (ρ).
Only, we can calculate the maximum buffer size for the
delay when the buffer is always full (ρ → 1). Then, the
buffer can be calculated using the following formula:

IPDVMMS/HTD [s]=
(BMMS/HTD+1)dMMS/HT D [B/packet]8hop

CMMS/HTD [kbit/s]
,

(5)

where:
dMMS/HT D – maximum packet size of all streams MMS or

HTD,
hop – the number of hops on the longest path,
BMMS/HT D – buffer size for MMS or HTD,
CMMS/HT D – allocated bandwidth for MMS or HTD.

For the values based on IPTD, the length of the buffer is
over-dimensioned (ρ < 1). If the buffer size is too small,
then we choose a larger buffer size in our implementation
(100 packets – as a minimum value).
The input data related to network topology and routing
are passed from ROMAN module to RMS module. RMS
node can be configured with the appropriate entries in the
configuration files. Configuration of QoS requirements is
stored in the file “qos.txt”, while the value of demands
are stored in the file “demands.txt”. This file configures
the demand for specific paths and specific classes of ser-
vice: signaling, real time, MM streaming, high throughput
data and standard. Demands are expressed as the weights,

and allocated capacity is directly proportional to the stated
weight. In another configuration file are stored quality of
service requirements for different classes of service (Ta-
ble 2). The file for the relevant class defines the following
metrics: IP packet loss ratio (IPLR), IP packet transfer de-
lay (IPTD), IP packet delay variation (IPDV) and packet
length d. Additional implementation details are presented
in Section 3. Table 2 presents the necessary data of CoS
for configuring RMS.

Table 2
The requirements on the quality of service [2]

Number Class IPLR IPTD IPDV d

1 Signaling X X X –
2 Real time X X X X
3 MM streaming X X – –
4 High throughput data X X – –
5 Standard – – – –

2.3. PD-PE Module

PD-PE module participates in routing process in the do-
main in the following way. It receives from the ROMAN
module information of customers attached to given routers.
This function is performed by configureAccessNetworks()
method in interface RomanToPd. Current list of customers
addresses belonging to the routers overwrites the old one.
Function requestAccessNetworks() in PdToRoman interface
request list of customer addresses in routers.
PD-PE module provides information for the call ad-
mission control function and resource allocation process
to the routers, in order to configure the interfaces. Both
functions are triggered by the RMS by using configureRe-
sources() and configurePorts() functions in RmsToPd in-
terface. During the network resources monitoring process,
PD-PE module transmits reports through reportResource-
State() function in PdToRms interface.

2.4. PE-PE Module

PE-PE module manages network devices’ configuration,
which is the final element for configuring the router out-
put interface. For this purpose the interface PdToPe has
configurePorts() function that provides router interface con-
figuration. This configuration includes resource allocation
(bandwidth and buffer size) for particular class of service.
PE-PE module is the last element of the signaling chain
for resource allocation. Module communicates with the
network devices. Anyway, this communication is not stan-
dardized and is specific to each network which actually acts
as a driver for the IP QoS System.
For appropriate work of PE-PE module, a database is
created containing the following tables: routers, inter-
faces, class configurations, pe points, access lists, policers,
shapers and session. The first four tables provide informa-
tion about topology of testbed network. It should be noted

24

On Dimensioning and Routing in the IP QoS System

that the contents of both interfaces and class configurations
tables will vary depending on the dimensioning of network
resources. Subsequent tables access lists, policers, shapers
and session will be filled during admission control process.
In routers table is stored basic information about routers in
testbed network. Since in the testbed network we imple-
ment 2 border routers and 4 core routers, then the routers
table contains 6 records, one for each router. Each of these
routers have an identifier that is used as a foreign key for ac-
cessing the table. The fields username, password and pass-
word enable contain the data necessary to establish a telnet
session with the routers. Field ip contains the IP address of
virtual loopback interface, which is defined on each router
and used as an identifier of the router in the testbed net-
work.
Class configuration table contains data about classes of ser-
vice provided in the system. This table contains the fol-
lowing fields: name – the name of the CoS, bitrate – bit
rate dedicated to the class on the output link [bit/s] and
queue limit – the queue size for the class. Moreover, the
interface id is a foreign key, which represents the identi-
fier of the network interface. For each interface are de-
fined five classes of service: real time, MM streaming, high
throughput data, standard and signaling.
Table Pe points contains data of all edge nodes in the net-
work. Moreover, the database module of PE-PE contains
the tables: policers, shapers i session, which are filled dur-
ing the per-flow operation of IP QoS System.

2.5. TRC-PE Module

TRC-PE node runs the call admission control algorithm.
For this purpose in PdToTrc interface we distinguish
the method configureResources() that provide description
of resource allocation for each class of service. After start-
ing this method, the following actions are performed:

• TRC-PE module finds in the database points that re-
alize call admission control. In case the point is not
found, the method returns a negative result.

• Resource configuration take into account bandwidth,
buffer size, packet loss ratio, packet transfer delay and
packet delay variation. Based on these parameters is
provided maximum load value, which is determined
by an call admission control algorithm. This value
is stored in the database. If the call admission con-
trol algorithm is not supported, the method returns
a negative result.

• After the proper run the algorithm returns a positive
result.

During configuration of the TRC-PE module was set up
a database named pbz trc. This database stores data about
available resources for each class of service on IP QoS
System and for all edge routers in the testbed network.
Table trc points contains information for all edge routers
(routers ER1 and ER2). Moreover trc resources table stores

information about the classes of service for all the routers
specified in the table trc points. While system is working
these tables are filled with records that store data about the
current sessions and flows in the testbed network.

3. Implementation of IP QoS System
Modules

ROMAN module has been implemented in C# and runs on
a virtual MONO platform on Suse Linux. Communication
with other modules is provided by the interface using the
ICE library. Figure 3 depicts ROMAN module divided in
functional blocks.

Fig. 3. ROMAN module divided in functional blocks.

The main functionality is included in the library of routing
algorithms. This module determines paths between each
pair of edge routers for each Class of Service. To find a path
between two routers we implemented Dijkstra, Kruskal and
SAMCRA algorithms.

To determine the routing topology of the network RO-
MAN reads OSPF table from one router of the testbed net-
work. This is achieved by using the database library. For
testing purposes we can load the network topology from
the XML file. In addition, the implemented module pro-
vides information to other modules about network topology
and established TE tunnels. This functionality of the RO-
MAN module is used by RMS and PD-PE modules. The in-
terfaces with other modules have been defined using
the SLICE language. Figure 4 shows the data structure
used by the interfaces.

Another function of ROMAN is to force routing in the net-
work by properly configuring the routers. This is done by
sending commands to the edge routers forming the MPLS
TE tunnel, giving an ordered list of routers through which
the path passes.

RMS module has been implemented in C++. The imple-
mentation uses the standard C++ libraries and the ICE li-
brary version 3.3.0 for C++. Figure 5 shows the sequence
of messages between ROMAN, RMS, and PD-PE modules
during the update of paths and network topology.

25

Witold Góralski, Piotr Pyda, Tomasz Dalecki, Jordi Mongay Batalla, Jarosław Śliwiński, Waldemar Latoszek, and Henryk Gut

Fig. 4. Data structures used by ROMAN module.

The RomanToRms interface defines the methods topol-
ogyHasChanged() and routingPathsHaveChanged() which
provide information from ROMAN to RMS module to up-
date network topology and paths, respectively. Moreover,
the RmsToRoman interface defines the methods request-
Topology() and requestPath() providing download of cur-
rent network topology and paths.

Fig. 5. Sequence of messages – update of paths and topology.

After RMS module receives the new data, it starts
call admission control function that calculates the new
limits and sets up router output ports. Subsequently,
new data are sent to the PD-PE node using the meth-
ods configureResources(CacConfList) and configurePorts-
(RouConfList). CacConfList structure contains the con-
figuration of edge routers for the CAC function (calcu-
lated on the basis of the capacity). RouConfList struc-
ture contains the configuration used for output ports of the
routers.

The RmsToPd interface defines the methods configur-
eResources(CacConfList) and configurePorts(RouConfList)
which enable the configuration message from RMS to PD-
PE module; specifically, CacConfList contains data for
CAC configuration and RouConfList for output ports con-
figuration.

PD-PE, TRC-PP and PE-PE modules were written in
Python language. For implementation was used ICE library

version 3.3.0 in Python library: readpool, SQLAlchemy,
psycopg2, database PostrgreSQL version 8.3.

4. Testbed Network

The described modules of the IP QoS System have been
installed in the testbed network. Figure 6 shows the
topology of the testbed network in which laboratory tests
are performed. Preliminary tests showed that the imple-
mented modules work together correctly and properly con-
figure the network mechanisms for providing DiffServ ar-
chitecture.

Fig. 6. Testbed network with implemented modules.

The implemented IP QoS System correctly configures the
testbed network, which is able to guarantee the QoS param-
eters set for the proper classes of service. In the following
text we expound some issues related to network configu-
ration by the PE-PE and ROMAN modules. Please note
that only the ROMAN and PE-PE modules configure the
network mechanisms in the network devices. The other
modules in the IP QoS System allow proper operation of
the whole system.

4.1. MPLS Path Configuration in Testbed Network by

ROMAN Module

The implemented software of IP QoS System is tested
and demonstrated in the laboratory network as described
in [9], [10]. ROMAN requires that edge and core routers

26

On Dimensioning and Routing in the IP QoS System

had been pre-configured to send MPLS traffic. In particu-
lar, it should be possible to implement OSPF routing and
MPLS on the physical interfaces:

interface < configured interface name e.g. “GigabitEth-

ernet0/1” >
mpls ip

mpls traffic-eng tunnels

ip rsvp bandwidth < interface bandwidth> < flow

bandwidth>

The next step is to create a tunnel between a pair of bound-
ary routers:

interface Tunnel1

description tunel1

tunnel destination < loopback interface ip address of
router terminating the tunnel>

tunnel mpls traffic-eng path-option 1 explicit name

<path name>

tunnel mpls traffic-eng record-route

no routing dynamic

Each router in the laboratory network has IP addresses as-
sociated with physical interfaces and logical address of the
router, which is unique throughout the network (Loopback0
logical interface). ROMAN uses Loopback0 interface ad-
dresses for configuring MPLS tunnels.
In the laboratory ROMAN application runs in the initial
phase of network configuration. This module detects net-
work topology, discovers paths from routing and sets MPLS
tunnels. Configured topology with MPLS paths are sent to
the RMS module.

4.2. Configuration of the Monitoring Mechanism in

Testbed Network by PE-PE Module

Monitoring mechanisms in testbed network are imple-
mented by a single token bucket for real time class of
service. To configure this mechanism we should set peak
rate value with burst size value [11]. Conforming pack-
ets are marked with proper DSCP value, whereas exceed-
ing ones are rejected. Sample commands for configur-
ing Cisco routers mechanism for version 12.1 are listed
below:

configure terminal

ip access-list extended <rule name>

permit UDP host <source IP address> eq <port num-

ber> host <sink IP address> eq <port number>

exit

interface <router interface that will be configured>

rate-limit output access-group <rule name> <peak

rate> <burst size> <burst size> conform-action set-

dscp-transmit <number DSCP> exceed-action drop

As we can see from the above list, first we define the
group to which we assign the UDP stream between two
routers and ports in the network. Then we configure

the router interface properly to indicate conforming pack-
ets (compatible with token bucket mechanism) with proper
DSCP value.

4.3. Configuration of the Scheduling Mechanism in the

Testbed Network by PE-PE Module

The first step is the definition of the classes of service. For
the exemplary real time CoS, the instructions would be as
follows:

class-map PbzRealTime

match dscp ef cs4

Next, the router must be configured (example for real time
class configuration) [11]:

policy-map <policy name>

class PbzRealTime

priority < bit rate allocated to the class of service >

exit

exit

interface < router interface that will be configured >

service-policy output <policy name>

hold-queue < total buffer size allocated to router in-

terface > out

The mechanisms used in the testbed correspond to these
ones which are accessible by Cisco routers. The presented
commands are intended to illustrate how we use router
mechanisms in the testbed network. It should be noted
that implemented IP QoS System can automatically config-
ure a testbed network in accordance with the requirements
of guaranteed quality of service.

5. Summary

During the project we carried out preliminary tests of
functionality and cooperation of IP QoS System modules.
These tests confirmed the correct implementation and co-
operation of the modules described in this article. During
the tests, we examined not only network configuration, but
also the performance of implemented system.
IP QoS System was presented at the conference Krajo-
we Sympozjum Telekomunikacji i Teleinformatyki 2010 –
KSTiT 2010. The exhibition demonstrated the performance
of implemented IP QoS System with all modules, calls gen-
erator and network analyzer. The exhibition presented a test
VoD application with QoE Telchemy analyzer and test VoIP
application with MOS Agilent analyzer.
The described implementation of IP QoS System shows that
the proposed solution could be used by network operators.
However, it should be noted that the implemented system is
designed for research and not for commercial purposes. For
this, a solution for commercial purposes should be written
from the beginning, in order to ensure not only correct work
but, especially, effective performance of the system.

27

Witold Góralski, Piotr Pyda, Tomasz Dalecki, Jordi Mongay Batalla, Jarosław Śliwiński, Waldemar Latoszek, and Henryk Gut

At last, let us remark that the proposed solution is limited
to single domain network and it does not take into account
different network access technologies. The proposed sys-
tem in future studies could be extended by a further element
like access networks such as, e.g., wireless network 802.11
standard.

References

[1] “An Architecture for Differentiated Services”, RFC 2475.

[2] H. Tarasiuk, W. Burakowski, A. Jajszczyk, and R. Stankiewicz,
“Specyfikacja algorytmów i mechanizmów sterowania ruchem na
poziomie pakietów w sieci IP QoS”, Raport PBZ-MNiSW-02-
II/2007/WUT/B.2/B.6, 2009.

[3] “Multi-Protocol Label Switching (MPLS) Support of Differentiated
Services”, RFC 3270.

[4] “Maximum Allocation Bandwidth Constraints Model for Diffserv-
aware Traffic Engineering”, RFC 4125.

[5] “OSPF Version 2”, RFC 2328.

[6] P. Pyda, T. Dalecki, “Realizacja rutingu w sieci IP QoS”, Przegląd

Telekomunikacyjny i Wiadomości Telekomunikacyjne, zeszyt 8–9, s.
1922–1923, 2009.

[7] P. Van Mieghem , H. De Neve, and F. A. Kuipers, “Hop-by-
hop Quality of Service routing”, Comput. Netw., vol. 37. no. 3-4,
pp. 407–423, 2001.

[8] F. A. Kuipers, “Quality of service routing in the Internet: Theory,
complexity and algorithms”, Ph.D. thesis, Delft University Press,
The Netherlands, 2004.

[9] H. Gut, W. Latoszek, M. Gajewski, J. Saniewski, E. Niewiadomska-
Szynkiewicz, T. Wiśniewski, P. Arabas, and M. Rotnicki, “Specy-
fikacja i instalacja sieci laboratoryjnej IP QoS”, Raport PBZ-
MNiSW-02-II/2007/WUT/B.8, 2009.

[10] H. Gut, W. Burakowski, W. Latoszek, P. Gielmuda, J. Śliwiński,
H. Tarasiuk, W. Góralski, A. Bęben, and P. Krawiec, “Inte-
gracja oprogramowania i instalacja w sieci laboratoryjnej IP QoS –
część II”, Raport PBZ-MNiSW-02-II/2007/WUT/D.6, 2010.

[11] W. Burakowski, J. Śliwiński, A. Bęben, H. Tarasiuk, P. Krawiec,
“Implementacja modułu do wspomagania konfiguracji sieci”, Raport
PBZ-MNiSW-02-II/2007/WUT/D.4, 2010.

Tomasz Dalecki received the
M.Sc.Eng. degree from the
Warsaw University of Technol-
ogy in 2002. Since 2003 he
works in Military Communi-
cation Institute. His research
interests cover management
systems design and implemen-
tation and security in IP-based
systems.

E-mail: t.dalecki@wil.waw.pl
Military Communication Institute
Warszawska st 22A
05-130 Zegrze Płd., Poland

Waldemar Latoszek was born
in Otwock, Poland, in 1981.
He received engeneer degree
from Warsaw University of
Technology in 2005. Since
2005 he works in National
Institute of Telecomunication.
His research interests cover
network architectures, testbeds,
traffic control.

E-mail: w.latoszek@itl.waw.pl
National Institute of Telecommunication
Szachowa 1
04-894 Warsaw, Poland

Henryk Gut was born in vil-
lage Zub-Suche, not far from
Zakopane, in 1951. He received
M.Sc. degrees in Telecommu-
nications from Warsaw Univer-
sity of Technology in 1975. Di-
rectly after graduation he be-
gan working for National In-
stitute of Telecommunication,
where he is employed un-
til now. During working for

NIT he was dealing with following topics: technical struc-
ture and topology optimization of data transmission net-
work; methods and systems for bit, frame and clock syn-
chronization; modeling of primary bit error processes in
binary data channels; designing of terminal and network
equipments for national data network SYNCOM and pag-
ing network POLPAGER. In period 1998–2006, his re-
search and development activity was focused on utiliza-
tion power lines and in-home electrical installations as an
transmission medium for broadband access and in-home
data networks. Recently he is participating in realiza-
tion two national grate projects: “Next Generation Ser-
vices and Networks – technical, application and market as-
pects. Network Traffic Management – IP network with full
QoS guarantee” and “Future Internet Engineering”. He
is author or co-author of about 35 papers published in na-
tional journals and conference proceedings and is co-author
of a few dozen internal technical reports of NIT.
E-mail: h.gut@itl.waw.pl
National Institute of Telecommunication
Szachowa 1
04-894 Warsaw, Poland

Witold Góralski – for biography, see this issue, p. 20.

Piotr Pyda, Jordi Mongay Batalla – for biographies, see
this issue, p. 11.

Jarosław Śliwiński – for biography, see this issue, p. 10.

28

