
Paper A Novel GPU-Enabled Simulator

for Large Scale Spiking

Neural Networks
Paweł Szynkiewicz

System Research Institute, Polish Academy of Science, Warsaw, Poland

Abstract—The understanding of the structural and dynamic

complexity of neural networks is greatly facilitated by com-

puter simulations. An ongoing challenge for simulating re-

alistic models is, however, computational speed. In this pa-

per a framework for modeling and parallel simulation of

biological-inspired large scale spiking neural networks on

high-performance graphics processors is described. This tool

is implemented in the OpenCL programming technology. It

enables simulation study with three models: Integrate-and-

fire, Hodgkin-Huxley and Izhikevich neuron model. The re-

sults of extensive simulations are provided to illustrate the

operation and performance of the presented software frame-

work. The particular attention is focused on the computa-

tional speed-up factor.

Keywords—GPU computing, OpenCL programming technology,

parallel simulation, spiking neural networks.

1. Introduction

Simulation of biological-inspired Spiking Neural Networks

(SNN) is generally a complex problem that involves cum-

bersome calculations, especially when processing of large

scale networks. The restrictions are caused by demands

on computer resources, i.e. processor and memory. As

biological neural networks become larger and more com-

plex, the required computational power grows significantly.

However, the calculations performed by neural networks

simulators can be easily partitioned into large number of

independent parts and carried out on many cores or com-

puters. It was observed that parallel implementation based

on MapReduce programming model improves the efficiency

of the simulator and speeds up a calculation process.

A low-cost, an alternative to supercomputers is the Graphi-

cal Procession Unit (GPU) – specialized massively-parallel

graphics processor that can be used as a general purpose

computational accelerator [1]. GPU-enabled parallel com-

puting is a relatively new area of research that has be-

come extremely popular over the last decade and is rapidly

increasing its advance into different areas of technology.

Last years a model for parallel computing based on the

use of GPUs to perform a general purpose scientific and

engineering computing was developed and used to solve

complex scientific and engineering problems. Using Com-

pute Unified Device Architecture (CUDA) or Open Com-

puting Language (OpenCL) many real-world applications

can be easily implemented and run significantly faster than

on multi-processor or multi-core systems. GPU clusters are

one of the most progressive branches in a field of parallel

computing and data processing nowadays.

The paper addresses issues associated with parallel comput-

ing systems and the application of GPU technology to large

scale systems simulation. During research a dedicated soft-

ware framework have been developed and designed that can

be used to extensive simulation of spiking neural networks

on GPU accelerators. This framework has been imple-

mented in the OpenCL programming technology and can

be executed on various computing platforms. The relative

benefits and limitations of presented software platform have

been evaluated based on results of numerical experiments

performed for various less and more complex models of

neural networks.

The remainder of this paper is organized as follows. A brief

survey of biological-inspired SNN models is presented in

Section 2. The overview of parallel SNN simulators is pro-

vided in Section 3. The organization, implementation and

usage of the software framework for SNN simulation on

GPU is described in Section 4. The results of simulations

of several complex networks on various hardware platforms

are presented and discussed in Section 5. Finally, conclu-

sions are drawn in Section 6.

2. Spiking Neural Networks Modeling

A spiking neural network is composed of a set of N spiking

neurons and E synapses – links < i, j >∈ E, E ⊆ N ×N
with weights wi j ≥ 0, [2]–[5]. Excitatory and inhibitory

synapses are distinguished. Excitatory synapses are con-

nections of all excitatory neurons, while inhibitory synapses

are connections of all inhibitory neurons. A spike is pro-

duced when a condition on the state variables is satisfied,

for example when the membrane potential exceeds a thresh-

old value (see Fig. 1). In general, various linear or nonlin-

ear threshold functions Vth : ℜ+→ ℜ+ have been defined

for various models of spiking neuron. Thus, a biological-

inspired spiking neuron can be described as a hybrid sys-

tem with one or several continuous state variables (mem-

brane potential V , conductances C, etc.), and spikes re-

ceived through the synapses that trigger changes in some

of the variables. Continuous evolution of a number of state

variables is usually modeled by a set of differential equa-

34

A Novel GPU-Enabled Simulator for Large Scale Spiking Neural Networks

tions with discrete events. The hybrid system formalism is

presented in [6].

j i

Vi
Vth

Spike

After-hyperpolarizing
potential (AHP)

Subliminal
stimuli

Receiving pulse

Threshold spike

Fig. 1. A model of spiking neuron.

The range of computational problems related to spiking

neurons is very large, especially in case when detailed bio-

physical representations of the neurons have to be used.

The example is the reproduction of intracellular electro-

physiological measurements. In general, modeling of bio-

logically realistic spiking neural networks requires tuning

the enormous number of parameters [7], [8]. In other cases,

one does not need to realistically capture the spike gener-

ating mechanisms, and simpler models are sufficient.

A survey of models of a spiking neuron is provided in

the literature [3], [4], [6], [9]. The research attention is

focused on three commonly used models, simple Integrate-

and-fire and models developed by Hodgkin and Huxley and

Izhikevich.

2.1. Integrate-and-fire Neuron Model

Integrate-and-Fire (I&F) is the simplest spiking neural

model described in [3], [6]. Let us refer to V as the neu-

ron’s membrane potential (the system state) and to I as the

input current. Assuming that I is a sum of excitatory im-

pulses IE , inhibitory impulses II and constant current offset

Io f f set the dynamics of a neural model is described by the

following state equations:

dV
dt

=
1
τ

(Vrest −V)+
1
C

(

IE + II + Io f f set
)

, (1)

dIE

dt
=−

IE

τsynE
, (2)

dII

dt
=−

II

τsynI
, (3)

where τ denotes a model time constant, τsynE and τsynI ex-

citatory and inhibitory synapses time constants, C is mem-

brane capacity, Vrest is initial potential of the membrane,

Vreset is membrane potential after spike (reset potential) and

τre f rac stands for relaxation time (time after spike during

which neuron is insensitive to stimulation). In I&F model

all spikes are generated when V ≥Vth. Potential after spike

is reset to V ←Vreset .

2.2. Hodgkin-Huxley Neuron Model

Integrate-and-fire is a simple model that can imitate some

of the biological neuron behavior. However, it is unable

to reproduce firing patterns like: bursting, chattering, etc.

The model developed by Hodgkin and Huxley (H&H) and

described in [10] is one of the most successful mathemat-

ical model of a complex biological process that has ever

been formulated. The idea is that the semipermeable cell

membrane separates the interior of the cell from the extra-

cellular liquid and acts as a capacitor. If an input current I
is injected into the cell, it may add further charge on the ca-

pacitor, or leak through the channels in the cell membrane.

In the standard H&H model there are three types of chan-

nels: a sodium channel Na, a potassium channel K and an

unspecific leakage channel l with resistance R. Assuming

that an input current I is a sum of excitatory impulses IE ,

inhibitory impulses II , constant current offset Io f f set and

externally injected current Iin j the model is yield by the

state equations:

dV
dt

=
1
C

[

−gNam3h(V −ENa)− (4)

− gKn4(V −EK)−gl(V −El)−ge(V −Ee)−

− gi(V −Ei)+ Io f f set + Iin j
]

,

dm
dt

= αm(V)(1−m)−βm(V)m , (5)

dn
dt

= αn(V)(1−n)−βn(V)n , (6)

dh
dt

= αh(V)(1−h)−βh(V)h , (7)

dge

dt
=−

ge

τsynE
, (8)

dgi

dt
=−

gi

τsynI
, (9)

where ge and gi denote excitatory and inhibitory synapses

conductivity, gNa, gK , gl ion channels conductance, ENa,

EK , El , Ee, Ei ion channels reverse potentials. The defi-

nitions of functions αm, βm, αn, βn, αh, βh are provided

in [3]. In order to produce an action potential the mem-

brane potential must be increased quickly enough to cross

threshold (dV/dt ≥Vth).

2.3. Izhikevich Neuron Model

H&H model is computationally expensive and in case of

huge networks requires many differential equations solu-

tions. Another kind of formalism which is able to replicate

different rich firing patterns achievable with H&H model,

using two simple equations with only one super-linear term

was proposed by Izhikevich in [11]. Izhikevich model (I)

has a computational efficiency similar to I&F model.

Izhikevich reduced biophysically accurate H&H neuronal

model to a two-dimensional system of ordinary differential

equations of the form

dV
dt

= 0.04V 2 +5V +140−U + I , (10)

35

Paweł Szynkiewicz

dU
dt

= a(bV −U) , (11)

dIE

dt
=−

IE

τsyn
, (12)

dII

dt
=−

II

τsyn
, (13)

if V ≥ 30 mV, then V ← c, U ←U +d, (14)

where IE and II denote presynaptic currents from excitatory

synapses and inhibitory synapses respectively, τsyn synapse

time constant (for excitatory and inhibitory τsyn = 1 ms),

a,b,c,d model parameters, C membrane capacity.

After the spike reaches its apex (+30 mV), the membrane

voltage and the recovery variable are reset according to the

Eq. (14). The Eq. (10) was obtained by fitting the spike

initiation dynamics of a cortical neuron (other choices also

feasible) so that the membrane potential V has mV scale

and the time t has ms scale. The resting potential in the

model is between −70 and −60 mV depending on the

value of b.

3. Simulation of Spiking Neural

Networks

3.1. Parallel Simulation of SNN

The simulation of spiking neural networks can be naturally

decomposed into three main phases:

• integrating the differential equations that describe the

neuron models,

• propagating the spikes to target neurons,

• changing states of target neurons.

It is obvious that the bottleneck for large scale networks

simulation is the propagation of numerous spikes across

the network considered. Recent research has shown that

modern simulators of spiking neural networks can be par-

allelized and executed on both multi-core CPUs and GPUs

regardless of the network topology [12]–[15]. Parallel com-

putation can be applied to all listed phases of the network

simulation. The parallelization of the first phase, i.e. nu-

merical integration is straightforward. It follows the Single

Instruction, Multiple Data (SIMD) paradigm. The number

of operations scale with the number of neurons in a net-

work. The total computational cost for large scale networks

is dominated by the second phase in which the operations

scales with the number of synapses.

Parallel implementations of SNN are reviewed and dis-

cussed in [6]. Three parallelization strategies are proposed

and discussed:

• N-parallel – spike propagation is parallelized over

neurons. Each thread updates the total input of one

neuron;

• S-parallel – spike propagation is parallelized over

synaptic evens. Each thread implements the effect

of a spike arriving at one synapse. The number of

executed threads is limited by the total number of

synapses in the network executed at each timestep;

• NS-parallel – combination of both aforementioned

strategies N-parallel and S-parallel. This approach is

recommended for GPU computing.

The software environments for neural networks simulation

can implement two simulation modes:

• time-driven – all neurons are updated simultaneously

at each timestep (tick of a global clock) – syn-

chronous distributed simulation,

• event-driven – neurons are updated only when the

event occur, i.e. they receive or emit a spike – asyn-

chronous parallel simulation.

Time-driven and event-driven algorithms for SNN simula-

tion are described in [6].

3.2. Survey of SNN Simulators

SNN Simulating on CPU. A survey of software environ-

ments for spiking neural networks simulation on CPUs is

presented in [6], [14]. NEURON [16] is a commonly used,

robust and efficient software platform that can support cre-

ation and evaluation of various models of biological neu-

rons and neural circuits. It implements both time-driven

and event-driven simulation modes. Moreover, NEURON

supports parallel processing on multicore and multiproces-

sor machines employing threads and distributed processing

in clusters using MPI standard. It is available on Unix,

Linux and MS Windows platforms. It was executed on

Cray and IBM Blue Gene supercomputers.

Neural Simulation Tool (NEST) [17] was created as a result

of a long term collaborative project to support the devel-

opment of technology for neural networks simulation. It is

designed to large scale neural systems with heterogenity in

neuron and synapses types simulation. It supports paral-

lelization by multi-threading and message passing, and can

be executed on multiprocessor machine and in a cluster

of computers. NEST implements time-driven simulation

mode, and is available on Unix, Linux, MS-Windows and

Mac OS platforms. The software is provided to the scien-

tific community under an open source license.

Brian [18], [19] is widely used, highly flexible and easily

extensible simulator for spiking neural networks available

on almost all platforms (Linux, MS Windows, Mac OS).

It provides the implementations of I&F and H&H neuron

models, and can be easily extended with the others. This

software platform is written in the Python programming

language. It is easy to learn and use. Various libraries of

methods written in the Python can be used, e.g. NumPy

and SciPy for numerical calculations, PyLab for results

graphical visualization. Parallel Python can be employed

to calculation parallelization. The sources, demos, manual

36

A Novel GPU-Enabled Simulator for Large Scale Spiking Neural Networks

and publications can be downloaded from the project Web

page [19]. It is released under the CeCILL license.

Mvaspike [20] is a general purpose tool for modeling and

simulating large and complex biological neural networks.

It is based on the event-based modeling and simulation

strategy. The focus is on spiking neural networks simu-

lation (integrate-and-fire and other spiking point neurons).

A good balance between simulation efficiency and model-

ing freedom is provided. The core of the system is im-

plemented in C++, however, the access from other pro-

gramming languages is easy. A parallel implementation is

available for multiprocessor machines and clusters.

SNN simulating on GPU. Several software environments

for SNN simulation on GPU are described in literature.

NeMo [21], [22] is a high-performance environment for

large scale spiking neural network simulation. It simu-

lates systems of Integrate-and-fire and Izhikevich neurons

on CUDA-enabled GPUs and uses a powerful scatter-gather

messaging algorithm to provide further optimization for

sparse random connectivities and supports real time sim-

ulation. It is a C++ class library. Moreover, NeMo has

bindings for C, Matlab, and Python. The software is pro-

vided under an open source license.

GPU-enhanced Neuronal Networks (GeNN) [23] is another

framework for simulating SNN on GPU. It is an open source

library that generates code to accelerate the execution of

network simulations on NVIDIA GPUs. It is entirely based

on CUDA and C/C++. It is flexible and easily extended

software – any neuron model can be simulated. In GeNN

users can introduce their own neuron models, synapse mod-

els, post-synaptic integration models and synaptic plasticity

rules by providing code snippets that are substituted into

the network simulation during code generation. GeNN is

available for Linux, Mac OS and Windows platforms.

The Myriad [24] CUDA GPU-enabled simulator focuses

on realistic biophysical models using H&H neurons and

densely integrated network models that scale poorly on

clusters of computers. These models have many analogue

interactions such as gap junctions and graded synapses that

require many model elements to update one another at each

timestep. Myriad provides a flexible and extensible inter-

face through a Python module, which is then translated into

a C-based implementation layer by code generation.

Table 1

Summary of selected SNN simulators

Brian NEST NEURON NeMo

Time-driven Yes Yes Yes Yes

Event-driven No No Yes No

GPU Yes No No Yes

Linux Yes Yes Yes Yes

Windows Yes No Yes No

Easy
Yes Yes No No

installation

SNN simulators – a summary. Selected parallel environ-

ments for SNN simulation were installed and tested by the

author of this paper. Table 1 presents the summary of their

evaluation. The focus is on their implementation and func-

tionality.

4. SNNS – Spiking Neural Network

Simulator

4.1. Description of SNNS

SNNS is a GPU-enabled software environment for spiking

neural networks simulation using the OpenCL program-

ming model. The aim was to provide a framework which

allows performing effective experiments with less and more

complicated models of spiking neural networks on vari-

ous GPUs. It enables simulation study with three models:

Integrate-and-fire, Hodgkina-Huxley and Izhikevich neuron

model. SNNS implements time-driven simulation mode

and NS-parallel parallelization strategy. Two of the sys-

tem’s principal goals are portability and usage in heteroge-

neous computing environments. SNNS can be executed on

GPUs from many vendors.

During simulation experiment performed under SNNS one

can distinguish three main stages: preparatory stage, exper-

imental stage and recording test results. At the preparatory

stage a neural model, presynaptic and postsynaptic neurons,

spiking generator and all initial parameters (total number of

neurons and synaps, initial values of state variables, etc.)

are provided. The SNNS framework cooperates with the

Brian simulator [19]. The neural network to be simulated is

generated using tools from Brian. The special programme

for recording the generated network into the disc file in the

comprehensive SNNS format has been developed.

The experimental stage begins when all decisions regarding

the simulated network are made. The corresponding com-

puting modules (kernels) are executed in sequence. The

spikes generated at each timestep are collected, neuron

states are updated and new spikes are firing and propa-

gating across the network.

Finally, all test results are recorded into a disc file in the

defined format. They can be easy visualized in popular

graphical programs. The Brian&SNNS system flow dia-

gram is presented in Fig. 2.

4.2. Architecture of SNNS

Programming for a GPU is rather specialised and needs

additional effort from the programmer [1]. Due to the fact

that the cores found on GPUs are less complex the pro-

grams that are executed should be especially tuned for min-

imizing their limitations and maximizing their potential to

provide high level of parallelization. Algorithms that do

not take into account the architecture of the GPU will not

use it efficiently. In particular, the constraints on memory

access patterns have to be considered. Therefore, tuning

GPU algorithms to the specific hardware is highly recom-

mended.

37

Paweł Szynkiewicz

CPU

Python

Brian/PyNN

Simulator SNN

Generate neuron
population

Generate synaptic
connections

Load synaptic
connections

Save neurons
to file

Save synapses
to file

CPU

SNN: C++

GPU

SNN: OpenCL

Load neuron
population

Generate network

Transfer data to GPU

Start simulation
t = t0

Read states
from GPU memory

Write states to
CPU memory

t = TK
No

Yes

Save results
(spike times)

t = t + tD

Simulation of 1 ms
network activity

gatherSpikes

updateNeurons

scatterSpikes

Fig. 2. The Brian&SNNS system flow diagram.

In order to take advantage of GPU accelerators from dif-

ferent vendors OpenCL [25], [26], which is a low level

GPU programming toolkit was used. OpenCL is an in-

dustry standard computing library developed in 2009 that

targets not only GPUs, but also CPUs and potentially other

types of accelerator hardware. In OpenCL efficient imple-

mentation requires preparation slightly different codes for

different devices, however it is much less complicated than

writing code in many native toolkits for NVIDIA and AMD

devices.

4.3. SNNS Components

SNNS consists of seven components. Its architecture is

depicted in Fig. 3. All components have been implemented

Population
CPU

Simulation
CPU

Connection
CPU

Network
CPU

Context
CPU

Spikes
CPU

Kernels (GPU)

updateNeurons
scatterSpikes
gatherSpikes

Fig. 3. The SNNS simulator components.

38

A Novel GPU-Enabled Simulator for Large Scale Spiking Neural Networks

Barrier

Writting to global memory

firingBuffer

.......
up to 1024 spiking neuron indices

Threads synchronization

WI0 WI1

Work item

State update
(new variable values)

Neuron
partition -1k

Neuron
partition +1kNeuron partition k

...0 1 256 257 1024 Parameters

Variables

NeuronGlobal memory

Global memory

Spike

Local memory

Spike index

Fig. 4. The performance of the updateNeurons kernel.

in OpenCL and C++ and can be executed on CPU and GPU

processors. The specification of components is as follows:

• Population – downloading neurons from the disc file

(C++),

• Connection – downloading synaptic connections

from the disc file (C++),

• Network – generation of network to be simulated

(C++),

• Context – CPU – GPU communication mechanisms

definition (C++),

• Simulation – a simulation scenario definition (C++),

• Kernels – network simulating (computations)

(OpenCL),

• Spikes – test results recording into a disc file (C++).

The goal was to develop an effective, flexible and failure

resistance software. Therefore, the main component of the

system – Kernel – were decomposed into three kernels that

perform the following operations:

• updateNeurons – neuron states updating,

• scatterSpikes – spikes propagating across the net-

work,

• gatherSpikes – collecting spikes received by all

neurons at each timestep.

The performance of the updateNeurons kernel is pre-

sented in Fig. 4. It implements the forward and exponential

Euler methods for numerical integration [27].

4.4. Memory Issues

It is obvious that mentioned above kernels need to ac-

cess at each timestep a large amount of memory, since all

neurons and synaptic variables corresponding to received

spikes have to be accessed. Due to the fact that neuron and

synaptic operations are often simple, the speed of memory

access limits the efficiency of SNNS. The shared memory

of GPU is fast but is very limited. The global memory

is very slow. Therefore, the most critical issue is the op-

timization of read/write memory access to the values of

synapses and neural variables at each timestep. The mem-

39

Paweł Szynkiewicz

......

... ...

......

......

Partition 0 Partition K

Processors

0 01 11023 1023

Core

Fig. 5. Allocation of neurons to partitions and processors.

ory transfers on GPU are much faster if variables that are

accessed at the same timestep are stored contiguously.

To maximize the speed of SNNS the particular attention

was paid on the design of efficient data structures. The

implementation is as follows. In each simulation exper-

iment a population of neurons with unique identifiers is

divided into partitions. To reduce the competition for mem-

ory access each partition is assigned to one GPU processor

(see Fig. 5). Moreover, all synapses are divided into sepa-

rated groups. Synapses with the same presynaptic neuron

are collected to one group. Synapses from the same group

are aggregated into the packages of fixed size and propa-

gated across the network. Such an implementation allows

to reduce memory usage.

5. SNNS Numerical Evaluation

The SNNS framework was used to simulate spiking neural

networks with various size (1000 to 30000 neurons). Sim-

ulation experiments were conducted for following models:

• Network I&F – Integrate-and-fire model, spike aver-

age frequency 7 Hz.

• Network I – Izhikevich model, spike average fre-

quency 15-25 Hz.

• Network H&H – Hodgkin-Huxley model, spike av-

erage frequency 15–30 Hz.

The experiments were performed on the following hardware

platforms:

• P1: Intel Core2 Quad 2.83 GHz, Radeon HD 6700,

4 GB RAM, Linux x64.

• P2: Intel Core i5-2500K, 3.30 GHz, Radeon HD

6900, Linux x64.

• P3: Intel Core i5-2500K, 3.30 GHz, GeForce GTX

560T, Linux x64.

The results of simulations, i.e. times of calculations per-

formed for various size of networks are presented in

Figs. 6–12.

0 5000 10000 15000 20000 25000 30000

T
im

e
[s

]

Number of neurons

Brian

SNNS

8

7

6

5

4

3

2

1

0

Fig. 6. Simulation time for Brian and SNNS simulators (Net-

work I&F).

25

20

15

10

5

0
0 5000 10000 15000 20000 25000 30000

T
im

e
[s

]

Number of neurons

Brian

SNNS

Fig. 7. Simulation time for Brian and SNNS simulators (Net-

work I).

0 5000 10000 15000 20000 25000 30000

T
im

e
[s

]

Number of neurons

Brian

SNNS

50

40

30

20

10

0

Fig. 8. Simulation time for Brian and SNNS simulators (Net-

work H&H).

5.1. Comparative Study of CPU and GPU Simulators

The aim of the first series of experiments was to com-

pare the efficiency of spiking neural networks simulation

on CPU and GPU processors. The performance of the

40

A Novel GPU-Enabled Simulator for Large Scale Spiking Neural Networks

CPU-enabled Brian simulator and the GPU-enabled SNNS

framework was evaluated and compared. The experiments

were performed on P1 and P2 hardware platforms. The

results obtained for three neuron models are presented in

Figs. 6–8.

The presented results show that the speed of simulation

strongly depends on the network size and neuron model

considered. The usage of GPU enabled speed up the simu-

lation from 4 times for Network H&H, 9 times for Network

H&H to 19 times for Network I&F.

5.2. Comparative Study of GPU Simulators

The aim of the next series of experiments was to compare

the efficiency of spiking neural network simulation con-

ducted on GPs from different vendors. First, two hardware

platforms P1 and P2 with different computing power were

tested. The results obtained for I&F and I neuron models

are presented in Figs. 9–10.

0 5000 10000 15000 20000 25000 30000

T
im

e
[s

]

Number of neurons

SNNS (P2)

SNNS (P1)
0.5

0.4

0.3

0.2

0.1

0

Fig. 9. Simulation time for SNNS simulator, P1 and P2 platforms

(Network I&F).

0 5000 10000 15000 20000 25000 30000

T
im

e
[s

]

Number of neurons

SNNS (P2)

SNNS (P1)

3.0

2.5

2.0

1.5

1.0

0.5

0

Fig. 10. Simulation time for SNNS simulator, P1 and P2 plat-

forms (Network I).

The usage of more powerful GPU device enabled to speed

up the simulation from 2.7 (Network I) to 3.7 (Net-

work I&F) times. The acceleration was decreased with

the size of the network.

Finally, the SNNS simulator was compared with the

NeMo [21] CUDA-enabled framework for large scale net-

works simulation. Two series of experiments were per-

formed for Network I&F and Network I. The tests for SNNS

simulator were conducted on the P2 platform equipped

with the AMD graphical processor Radeon HD 6900. The

NeMo was executed on the P3 platform equipped with the

NVIDIA graphical processor GeForce GTX 560T. The re-

sults of simulation experiments, i.e. times of calculations

are depicted in Figs. 11 and 12.

0 5000 10000 15000 20000 25000 30000

T
im

e
[s

]

Number of neurons

SNNS

Nemo0.25

0.20

0.15

0.10

0.05

0

Fig. 11. Simulation time for NeMo and SNNS simulators (Net-

work I&F).

0 5000 10000 15000 20000 25000 30000

T
im

e
[s

]

Number of neurons

SNNS

Nemo

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

Fig. 12. Simulation time for NeMo and SNNS simulators (Net-

work I).

It is observed that the CUDA-enabled simulator running on

NVIDIA hardware gave a better results than the OpenCL

one. The simulation time of neural network formed by

1000 neurons performed using the SNNS framework was

decreased about 2 times for the NeMo framework and

NVIDIA GPU. Such result was expected – CUDA is the

technology dedicated to NVIDIA GPU. However, the nu-

merical experiments showed that the acceleration level

41

Paweł Szynkiewicz

with respect to OpenCL and AMD GPU decreases with

the bigger size of a network.

6. Summary and Conclusion

The paper provides a short overview of methods and tools

for parallel spiking neural networks simulation on GPU ac-

celerators. Spiking neural networks are natural candidates

for massively parallel computations. SNN simulation re-

quires complex calculations and parallel processing of large

volumes of data, in which a speed of calculation and data

decomposition are of essence. The attention of the paper is

focused on the OpenCL and GPU-enabled software frame-

work SNNS for simulating large scale networks. SNNS

was designed to be powerful, effective, scalable, flexible,

and easy to use. The experimental results presented in this

paper demonstrate the effectiveness of the SNNS frame-

work, and confirm that the direction to speed up complex

systems simulation is to port it to GPU units.

As a final observation one can say that CUDA and OpenCL

computing systems offer a new opportunity to increase the

performance of parallel HPC applications in clusters, by

combining traditional CPU and general purpose GPU de-

vices. However, although much progress has been made in

software and hardware for HPC computing simulation of

large-scale neurobiologically inspired systems is still a chal-

lenging task.

Acknowledgment

The author would like to thank Dr. Paweł Wawrzyński for

assistance with this research.

References

[1] W.-M. W. Hwu (Ed.), GPU Computing Gems Emerald Edition, 1st

ed. Morgan Kaufman, 2011.

[2] N. Carnevale and M. Hines, The NEURON Book. Cambridge Uni-

versity Press, 2006.

[3] W. Gerstner and W. Kistler, Spiking Neuron Models. Cambridge Uni-

versity Press, 2002.

[4] E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geom-

etry of Excitability and Bursting. The MIT Press Cambridge, 2007.

[5] J. Vreeken, “Spiking neural networks: An introduction”, Tech. Rep.,

Artificial Intelligence laboratory, Intelligent Systems Group, Univer-

sity of Utrecht, 2003.

[6] R. Brette et al., “Simulation of networks of spiking neurons:

A review of tools and strategies”, J. Computat. Neuroscience,

vol. 23, no. 3, pp. 349–398, 2007.

[7] K. D. Carlson, J. M. Nageswaran, N. Dutt, and J. L. Krichmar, “An

efficient automated parameter tuning framework for spiking neural

networks”, Front. in Neuroscience, vol. 8, art. 10, pp. 1–16, 2014

[Online]. Available: http://dx.doi.org/10.3389/fnins.2014.00010

[8] Z. Fountas and M. Shanahan, “GPU-based fast parameter optimiza-

tion for phenomenological spiking neural models”, in Proc. Int. Joint

Conf. Neural Netw. IJCNN 2015, Killarney, Ireland, 2015, pp. 1–8.

[9] E. M. Izhikevich, “Which model to use for cortical spiking neurons”,

IEEE Trans. Neural Netw., vol. 15, no. 5, pp. 1063–1070, 2004.

[10] A. L. Hodgkin and A. F. Huxley, “A quantitative description of

membrane current and its application to conduction and excitation

in nerve”, J. Physiology, vol. 117, no. 4, pp. 500–544, 1952.

[11] E. M. Izhikevich, “Simple model of spiking neurons”, IEEE Trans.

Neural Netw., vo. 14, no. 6, pp. 1569–1572, 2003.

[12] R. Brette and D. F. Goodman, “Simulating spiking neural networks

on GPU”, Network, vol. 23, no. 4, pp. 167–182, 2012.

[13] M. Chessa, V. Bianchi, M. Zampetti, S. P. Sabatini, and F. So-

lari, “Real-time simulation of large-scale neural architectures for vi-

sual features computation based on GPU”, Network, vol. 23, no. 4,

pp. 272–291, 2012.

[14] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, and

A. V. Veidenbaum, “A configurable simulation environment for

the efficient simulation of large-scale spiking neural networks on

graphics processors”, Neural Netw., vol. 22, no. 5–6, pp. 79–800,

2009.

[15] R. Ananthanarayanan and D. S. Modha, “Anatomy of a cortical sim-

ulator”, in Proc. of ACM/IEEE Conf. Supercomput. SC’07, Reno,

NV, USA, 2007, pp. 1–12 (doi: 10.1145/1362622.1362627).

[16] NEURON Simulator [Online]. Available:

http://www.neuron.yale.edu/neuron/

[17] NEST Simulator [Online]. Available:

http://www.nest-initiative.org/

[18] D. Goodman and R. Brette, “The Brian simulator”, Front. in Neu-

roscience, vol. 3, no. 2, pp. 192–197, 2009.

[19] Brian Simulator [Online]. Available:

http://briansimulator.org/

[20] Mvaspike Simulator [Online]. Available:

http://mvaspike.gforge.inria.fr/

[21] NeMo Simulator [Online]. Available:

http://nemosim.sourceforge.net/

[22] A. Fidjeland, E. Roesch, M. Shanahan, and W. Luk, “NeMo: a plat-

form for neural modelling of spiking neurons using GPUs”, in 20th

IEEE Int. Conf. Application-specific Syst., Architec. & Processors

ASAP 2009, Boston, MA, USA, 2009.

[23] GeNN Simulator [Online]. Available:

http:genn-team.github.io/genn/

[24] Myriad Simulator [Online]. Available: http://cplab.net/myriad/

[25] OpenCL – The open standard for parallel programming of heteroge-

neous systems [Online]. Available: http://www.khronos.org/opencl/

[26] E. Bainville, “OpenCL multiprecision tutorial”, Jan. 2010 [Online].

Available: http:// http://www.bealto.com/mp-opencl.html

[27] R. R. D. Stewart and W. Bair, “Spiking neural network simulation:

numerical integration with the Parker-Sochacki method”, J. Compu-

tat. Neuroscience, vol. 27, pp. 115–133, 2009 (doi: 10.1007/S10827-

008-0131-5).

Paweł Szynkiewicz received his

M.Sc. in Computer Science

from the Warsaw University of

Technology, Poland, in 2015.

Currently he is a Ph.D. student

in the Systems Research Insti-

tute, Polish Academy of Sci-

ence. In 2015–2016 employed

in Comarch. Since 2016 he is

with BrightSolutions IT. His

research area focuses on soft-

ware technologies, HPC computing, neural networks and

machine learning, genetic algorithms, computer networks

security.

E-mail: pszynk@gmail.com

Systems Research Institute

Polish Academy of Science

Newelska st 6

01-447 Warsaw, Poland

42

