
Paper An Online Stream Monitoring

Algorithm for Fraud Detection

in the Transport of Goods
Paweł M. Białoń

National Institute of Telecommunications, Warsaw, Poland

https://doi.org/10.26636/jtit.2020.146620

Abstract— The process of monitoring vehicles used in road

transports plays an important role in detecting fraud commit-

ted by drivers. Algorithm designers face a number of chal-

lenges, including large number of vehicles monitored, de-

mands related to online calculations, and ability to easily ex-

plain fraud alarms triggered to supervisors who make final

decisions about actions to be taken. In this paper, we propose

rather general, lightweight stream, online heuristics. The vehi-

cle’s position is periodically controlled by a GNSS device. The

algorithm detects potential illegal activities along the route be-

tween the origin and the destination. Anomalies in the vehicle’s

trajectory are detected, based on a multi-resolution analysis

of the economy of routes. The economy metric is easily under-

stood and verifiable by controllers. The solution is also capable

of identifying clearly suspicious trajectories that popular ge-

ofencing approaches would overlook. The scale on which the

solution may be adopted is obtained thanks to the stream –

like nature of the algorithm: essentially, the resources used

do not increase along with the size of the input stream (the

number of GNSS frames generated for the vehicle). An ex-

periment illustrating the algorithm’s viability is presented

as well.

Keywords—fraud detection, stream processing, transport moni-

toring.

1. Introduction and Related Work

The process of monitoring road transport operations [1]

is usually understood as using a global navigation satellite

system (GNSS) – in more cases GPS – to control the po-

sition of vehicles. A vehicle is equipped with an on-board

unit (OBU) which identifies its GPS position and sends

it, periodically, over the Internet, to a host computer sys-

tem. An operator checks the position of the vehicle in or-

der to control compliance with predefined routes and time

schedules, to ensure the safety of the truck and its crew,

and to identify any irregularities, such as extra pickups

or drops.

Let us focus on the last activity, i.e. detection of fraud. Usu-

ally, commercial vehicles travel between predefined origin

and destination locations, transporting goods between these

points. A similar situation is dealt with in the case of taxi

operations, where the passenger needs to be transported

from a particular starting point to a specific destination. In

all such situations, there is a risk that the driver may commit

fraud by transporting some additional goods or passengers,

on their own initiative, along with the legal load. This may

require the driver to visit additional locations along his/her

route, to illegally drop or pickup additional goods. Drivers

may also take care of their private business while working.

The methods used to detect such cases of frauds are based

on various concepts.

Such methods may be online- or offline-based. In an online

analysis, a suspicious behavior of the vehicle is detected by

the system quickly after or even before the forbidden be-

havior takes place. For example, the system detects that

a truck is driving in the wrong direction, or that it takes

a lengthy break between the loading/dropping locations.

An efficient online detection system may be used for trig-

gering an alarm informing monitoring center staff about

such events. They, in turn, may contact the driver or send

other employees to check on the suspicious vehicle. An of-

fline analysis consists in analyzing journeys after these have

been completed (one-by-one or as a set), in order to detect

potential fraud.

The detection methods may be used on different scales.

The number of vehicles monitored may grow rapidly in

large companies. Monitoring systems may also be operated

by governments, countrywide, and may cover considerable

number of vehicles. For example, road transports of se-

lected goods have been monitored in Poland since 2017,

pursuant to the “Act on the goods transport monitoring sys-

tem” dated 9 March 2017. The main goal of the solution is

to control the movement of goods subject to the imposition

of excise duty predominantly fuels. The key objective is to

prevent unauthorized or unofficial loading or unloading op-

erations that would result in avoiding the payment of taxes.

Pursuant to the aforementioned Act, any operations involv-

ing transportation of specific goods must be preceded by

a suitable notification submitted via a government-operated

online system, known as SENT [2]. The notification con-

tains: a CN (or the Polish PKU) classification code of

the goods concerned, their quantity, address of loading

79

Paweł M. Białoń

and unloading locations, details of contractors involved,

date on which the transport operation begins, vehicle de-

tails (mainly the license plate number) and owner’s details.

As of the end of 2018, vehicles transporting goods moni-

tored with the use of the SENT system must also be moni-

tored by GNSS. Therefore, a vehicle must be equipped with

a mobile phone with a suitable tracking app. Alternatively,

an on-board unit (OBU) already installed in the vehicle

may be used in connection with the host system to collect

information required by the government. A single frame of

tracking information contains primarily GNSS coordinates

of the truck, GNNS time corresponding to the specific po-

sition, and identification data (of the OBU). There are two

sources of information: SENT declarations and tracking

information. Several authorities are allowed to control the

vehicles in order to verify, whether the actual status of the

vehicle matches the declarations submitted.

From the point of view of efficiency of the monitoring

process, it is important how the vehicle’s position is ana-

lyzed within the company. It seems that manual (visual)

supervision seems to be the most common approach. The

position of a vehicle is displayed on a map, along with

its speed and trajectory. This information is analyzed by

the operator. Interestingly, according to practitioners, may

systems of this type are based on manual analysis. OBUs

obtain GPS information periodically (in predefined inter-

vals, upon a predefine distance has been covered, or of the

speed has changed by a specific value). It needs to be borne

in mind, however, that it is not always possible to send GPS

data (to the host) online. The Internet connection may be

temporarily unavailable due to switching between differ-

ent base stations, the vehicle may be present in coverage

holes, or the OBU may be switched off. Therefore, OBUs

usually buffer GPS frames and retransmit them after the

Internet connection has been regained. Interestingly, it is

often the case that the current position is transmitted first,

followed by the delayed frames. The current position of the

vehicle is more important for the operator than its histori-

cal location. Therefore, OBUs do not preserve the order of

GPS frames while sending. This indicates (though, clearly,

does not determine with certainty) that the analysis per-

formed is either manual or, even if automatic, is based on

some simple logic that does not require the true order of

GNSS frames. A clear drawback of the manual approach

consists in its dependence on the mental and physical con-

dition of humans performing the analysis, who are capa-

ble of supervising a small number of vehicles only. In

order cope with this, new systems are usually equipped

with automated solutions that are based on some simple

logic. The logic uses additional information from vehicle

sensors (see [3]). Load sensing capabilities are particu-

larly useful, since they allow to easily detect anomalies in

the weight of the commodity, caused by illegal drops or

pickups made during the trip. Fraud evidence provided by

such sensors is of the solid variety, since it is difficult to

explain unplanned changes in load weight. On the other

hand, equipping vehicles with specialized sensors is not al-

ways possible due to cost, compatibility and scale-related

considerations.

Geofencing [4]–[6] is a good example of the automatic

analysis-based approach. The area in which the vehicle

may be present is defined, and each violation of the bor-

derline triggers on alarm that calls for specific action to be

taken. The permitted region is often defined as a corri-

dor along a predefined route. The logic of geofencing is

simple and an alarm may be generated based on analyz-

ing a single frame, independently of the previous frames.

The geofencing algorithm does not require a lot of mem-

ory. As explained in subsequent sections, one the main

difficulties associated with geofencing consists in the need

to deal with a potentially large number of routes between

two points within the road network. This problem is faced

unless we force the vehicle to use a particular route (which

is not always viable, e.g. when transport monitoring sys-

tems are operated by governments). Some route variants

can be complicated and winding, which makes them clearly

uneconomical and fraud-suspicious, but still permitted by

geofencing. Moreover, drivers may be required to make

small detours to rest areas, service stations or by accident,

when they get lost along the way or make a mistake at an

intersection. Geofencing might be too sensitive for such

scenarios.

Not surprisingly, various machine learning techniques have

been deployed to detect anomalies and fraud in trans-

port. Various methods are used here, including statisti-

cal approach [7], statistical methods combined with the

Dempster-Shafer evidence theory [8], separation through

support vector machines [9], just to name a few works.

Such approaches usually compare the current route to what

they have learned about former routes during the learning

phase. The approaches are perfectly capable of modeling

proper routes inherited from the mathematical method re-

lied upon a while learning. However, they also suffer from

several drawbacks. The first one is shared with geofenc-

ing: there are the plenty of possible routes between any

two points, which are equally reasonable and are character-

ized by similar lengths and, therefore, costs. Nonetheless, if

we compare such routes using a simple similarity measure,

e.g. based on distances between trajectory points, routes

that are almost equal become dissimilar. This phenomenon

complicates the learning process and hinders the process of

identifying a good model. The second problem consists in

the verdict given by the algorithm (e.g. detection of a suspi-

cious route) being difficult to explain to a supervisor. This

is a known drawback of many learning methods, but it plays

an important role in our application. Usually, the algorithm

triggers a suspicious route alarm that is later taken over by

an operator whose role is to either initiate verification, com-

merce a pursuit or cancel the alarm. In order to make the

decision, it is desirable that the operator knows why the sys-

tem has triggered the alarm. Another drawback of learning

methods consists in the fact that the learning phase has to

take place, which means that the system cannot start oper-

ating without having collected a reliable history of routes,

80

An Online Stream Monitoring Algorithm for Fraud Detection in the Transport of Goods

possibly manually marked by an operator as valid or fraud

prone. Such approaches may also be of the heavy-weight

nature, both in terms of their conceptual complexity and

computing resources required, especially during the learn-

ing phase. Selected authors are aware of these drawbacks

and apply various measures to prevent them. For example,

in [7], a one-class learning approach is used which simpli-

fies the learning phase by making it human-independent.

Addition of the two-class learning approach, when a hu-

man introduces negative (suspicious) examples, is possible

as well. This optimizes the learning effect and also allows

the learned model to follow human way of reasoning. The

authors of [8] observe the phenomenon of multiplicity of

equivalent routes. Thus they assess the current route not

only by a usual point-distance similarity measure in ref-

erence to typical routes, but also by examining the total

length of the connection. The expected distribution of the

length for a given starting and ending point is calculated

based on the historical files. Sadly, the authors only con-

sider the total length of the vehicle’s trajectory. They do not

deal with the sections of fragments of the trajectory, poten-

tially omitting some local deviations from the proper route.

An interesting approach to online work and to the large

scale of computing is proposed in [10]. As usual, a dis-

similarity measure is used to compare the current trajec-

tory with the historical ones. The potentially resource-

heavy method is accelerated with special indexing of tra-

jectories performed via the so-called local clustering and

vantage trees.

In this paper, a fraud detection method based on on-line

knowledge concerning development of the vehicle’s trajec-

tory is proposed. When the system detects an anomaly in

the trajectory fragment observed so far, it triggers an alarm

that draws the attention of the supervisor and requires them

to take suitable action or to disregard the alarm. The pro-

posed approach is based on a multi-resolution analysis of

the route’s economy, measured based on trajectory zigzag-

ging (deflection from a straight line). This measure offers

a multi-resolution functionality: both the shape of the en-

tire route and the lengths of its fragments of various sizes

are examined. The intention is to eliminate, from the algo-

rithm, the many drawbacks referred to above. The approach

accepts various route variants between the origin and des-

tination locations and treats equally, as long as they exhibit

similar economy metrics. It is conceptually easy and un-

derstandable for the operator assessing the alarm, who may

easily assess the zigzagging of the route themselves. It is

ready to run out of the box, without a lengthy and com-

plicated learning phase, but some parameter tuning may

still be necessary. The algorithm is also lightweight, fa-

cilitating its application in large-scale systems. It utilizes

a para-stream character, and thus is suitable for on-line

monitoring applications. Stream processing is strictly a syn-

onym for “ideal data processing algorithm” [11]. Such an

algorithm is characterized by constant memory usage per

the size of input data. Thus, if the input data has the form

of a stream of data, i.e. a set of GNSS frames for a given

vehicle, memory usage does not reach a certain limit as the

stream proceeds.

2. The Algorithm

The algorithm described in this section is used for detecting

anomalies in the economy of the observed moving trajec-

tory. Normally, a vehicle should approach its destination

using a straight and short route. Whenever this require-

ment is not met, the route is treated as suspicious. There is

a possibility (risk) that deviation from the straight line was

caused by illegal activity.

The concept of the algorithm may be easily explained by

comparing it with geofencing. In geofencing, we define

corridors along the projected route; whenever the corridor

is left, an alarm is triggered. The most obvious drawback

of this approach is the fact that multiple potential routes

exist between the origin and the destination, as explained

in the example of the grid layout of roads, as depicted in

Fig. 1. Routes A, B, C look equally reasonable and the

number of similarly reasonable routes grows exponentially

along with the increase of the grid size. Therefore, it is

not obvious how a specific corridor should be defined. If

we define a “grid of corridors”, i.e. those existing along

all road segments present in the grid, we also accept such

routes as D, which is lengthy and winding, and thus clearly

suspicious in terms of potentially illegal loading and un-

loading operations.

Fig. 1. Some potential routes between two points in a grid of

roads. (See digital edition to find the color version).

Another drawback of corridors is that they do not allow

any small deviations to rest areas, parking lots, tire shops,

etc., especially if reaching these requires some maneuvers

on one way roads and clover leaf interchanges.

Thus, in the proposed system, geofencing is replaced by

an analysis of trajectory zigzagging. For given a trajec-

tory T with points x1, x2, . . ., xn on a plane, we define

its zigzagging Z(T) as:

Z(T) =

n−1
∑

i=1
dist(xi,xi+1)

dist(xn,x1)
, (1)

where dist(x,y) denotes the Euclidean distance between

x and y. Alternatively, the length of the shortest path be-

tween x and y along the existing roads could be used for

dist if map information is available, as would be discussed

later. Zigzagging is simply the ratio between the length of

the trajectory and the distance between its end points. The

81

Paweł M. Białoń

main idea is to set a limit value (Zmax) for the permitted

zigzagging of vehicle trajectories. If trajectory zigzagging

exceeds Zmax, the trajectory becomes suspicious and illegal

activity is taken into consideration. The rationale behind

such a setting is that zigzagging routes suffer from bad

economy – if the driver does need to go to illegal locations,

they would not need to take such routes. Note, for exam-

ple, that routes A, B, C (if represented as sufficiently dense

discrete trajectories, i.e. trajectories with sufficiently large

numbers of points) are characterized by a zigzagging mea-

sure of approx. the square root of 2. Route D has a larger

zigzagging measure. This example shows that should Zmax

be set at say 2 or a little more, in order to allow routing in

a more complicated road grids.

Assessment of simple zigzagging measure values of the

entire trajectory between the origin and destination points

does not eliminate the potential of falsely evaluating the

correctness of a given route based on zigzagging. It needs

to be noted that if we take any fragment of the trajectory

into consideration, it also should be economical in itself, i.e.

should be characterized by a limited zigzagging measure.

To cope with this, a multiresolution analysis of the route

traveled so far, at a given point of the journey, should be

performed. The zigzagging measure of the entire trajectory

recorded so far, of a fragment of the trajectory ending at

the current location, or even of a smaller fragment of the

trajectory ending at the current location may be analyzed.

Let us assume that the vehicle’s route is given by the stream

of points x0, x1, x2, . . ., with x0 being its origin. The

proposed stream algorithm, invoked upon receiving frame

xi, is outlined as Algorithm 1 (variable therewasanalarm
is initialized to false).

Algorithm 1 . Response to a new trajectory point xi

1: If therewasanalarm Then

2: Return

3: End if

4: Calculate the approximations of the subtrajectory end-

ing at xi:

T1 = (x1
1,x

1
2, . . . ,x

1
n1

) ,

T2 = (x2
1,x

2
2, . . . ,x

2
n2

) ,

. . .

Tr = (xr
1,x

r
2, . . . ,x

rnr),

where r is the resolution level, n1, n2, . . . nr are not

greater than the algorithm parameter N and x1
n1

= x2
n2

=
xr

nr
= xi.

5: Compute Z(T1), Z(T2), . . ., Z(Tr) (zigzagging for

empty or one-point degenerate trajectories is assumed

to be 0).

6: If any of them exceeds Zmax Then

7: Trigger alarm

8: therewasanalarm = true

9: End if

The proposed algorithm is also depicted in Figs. 2–3.

An alarm is generated only once for a given route in order

to avoid the operator’s distraction by a storm of alarms for

consecutive trajectory points. This feature uses the Boolean

therewasanalarm variable.

Note that since variables n1, n2, . . ., nr approximating sub-

trajectories at particular resolution levels are limited by N,

the number of resolution levels r is finite. Therefore, the

algorithm conforms to the stream regime. The price that

needs to be paid for this is that sub-trajectories may be

approximated at N points at the most. In practice, it is

difficult to implementing step 1 without storing all points

x0, x2, . . ., xi in the memory.

Fig. 2. Algorithm 1 used for processing a new trajectory point.

2.1. Selecting Route Approximations at Specified

Resolution Levels

At each resolution level, the zigzagging of approximations

T1,T2, . . . ,Tr of the sub-trajectory is examined. These ap-

proximations are some trajectories made up of selected

points of the sub-trajectory that has been observed so far.

The selection of points and the construction of Ti is based

on keeping memory usage limited.

Determination of Ti is based on characterization of the res-

olution, performed by the reference length step for a given

i. This reference length is called stridei. This is given by:

stridei = minstride2i for i = 1, . . . ,r .

The algorithm’s minstride parameter defines the length of

the reference segment of the trajectory at the finest resolu-

tion level. Parameter r itself is evaluated as:

82

An Online Stream Monitoring Algorithm for Fraud Detection in the Transport of Goods

r =

⌈

log2
maxroutelength

rrbu f len ·minstride

⌉

,

where rrbu f len = N−1 is the assumed maximum number

of segments in Ti, maxroutelength is the maximum possible

length (sum of segment lengths) of the entire trajectory.

The default parameter settings are: rrbu f len = 4, max-

routelength = 20,000 km, minstride = 2 km.

Fig. 3. Approximating the trajectory created so far with trajec-

tories at 3 different resolution levels (r = 3). Probably, only the

medium resolution trajectory t2 (yellow) has a zigzagging measure

that exceeds the alarm threshold.

Trajectories Tj for j = 1, . . . ,r are updated upon receiving

a current point xi of the trajectory according to Al-

gorithm 2. Here, T ′j is a cyclic buffer storing a se-

quence of rrbuflen latest elements appended to this

buffer. Ti′j is initialized to empty sequence. Variable y j is

initialized to x0.

Algorithm 2 . Update of trajectory approximation Tj with

a new trajectory point xi

1: stridei := pow(2i,minstride)
2: r := dlog2 maxroutelength/(rrbu f len ·minstride)e
3: If dist(xi,yi)≥ stridei Then

4: Append xi to Tj (with deleting all but rrbuflen last

element of the sequence stored in T ′j .
5: Set yi = xi.

6: End if

7: Return current Tj as sequence stored in T ′j (if it ends

with xi) or with appended point xi (otherwise).

In other words, sequence Tj is designed by choosing points

of sequence xi. The first is x0, any new point xi from the

vehicle’s trajectory is appended if and as soon as it is dis-

tanced from the previous appended point by at least stridei.

Such a sequence is appended the current point, if it does

not end with it. At most last rrbu f len appended points

are finally taken to form sequence Tj. Such an approach

ensures limited memory usage during the construction pro-

cess, which is O(rrbu f len). Moreover, sequence Tj has

segments of length of approximately strideii, except for

the last segment which was added to keep sequence Tj as

fresh as possible.

The settings for r and stridei (for i = 1, . . . ,r) are

selected so that:

• the logarithms of numbers stridei form an arith-

metic sequence,

• the coarsest resolution level, Tr is capable of cov-

ering the entire trajectory of the maximum length

maxroutelength, i.e. to contain its first and last point.

The Ti for other (i.e. those used to assess local zigzag-

ging of finer resolution levels), might obviously be

shorter.

2.2. Extensions

The algorithm is equipped with several extensions.

Different zigzagging limits may be used for Z(T1),
Z(T2), . . . ,Z(Tr), instead of a single Zmax, in order to al-

low greater zigzagging at fine resolution levels. For given

Ti, the limit is:

• Zmax,short if stridei < zigstridethreshold,

• Zmax,long otherwise.

The reason for this extension is an observation that nat-

ural zigzagging of vehicles differs depends on the scale.

In the case of routes that are less than 10 kilometers

long, roads are often projected as being perpendicular

to each other. Furthermore, drivers must perform ma-

neuvers that increase the zigzagging measure, like by-

passing one-way roads, making loops at multi-level in-

tersections, obeying “no-turn” signs, etc. Hence, the de-

fault parameter settings are Zmax,short = 2.0, Zmax,long = 1.7,

zigdistthershold =10 km.

The second extension allows to include the destination point

in the trajectory that has been covered so far. If we know

the trip’s destination (which is usually the case), we may

not only examine various zigzagging measures based on the

sub-trajectory covered so far, but we may also proactively

check whether various zigzags will need to become exces-

sive in the future, assuming that the vehicle will eventu-

ally reach its destination. This extension works as follows.

Upon receiving of consecutive point xi, Algorithms 1 and 2

are invoked, but:

• the zigzagging excess check is performed as in Al-

gorithm 1 (possibly with the extension of various

zigzagging limits),

• the zigzagging check is performed again, not for ap-

proximate trajectories T1, . . . ,Tr, but for these trajec-

tories, each with the destination point appended.

If any of these checks triggers an alarm, the entire algorithm

generates an alert. This extension allows to trigger alarms

in some situations. A typical situation is when a vehicle

starts its trip in the direction that is opposite to its destina-

tion, in order to perform some illegal activity. Then, in the

basic algorithm, any zigzagging activity observed increases

extensively only after the illegal location has been reached

and upon the vehicle starts moving towards the legal des-

tination. However, an operator observing the route might

be aware of the bad intentions of the driver even before the

illegal location is reached. The vehicle driving in the op-

posite direction it allowed to continue doing so. By adding

an artificial segment to the route covered so far, which pre-

dict the route ahead, allows the proposed algorithm to alert

83

Paweł M. Białoń

the operator before the illegal location is reached. This ad-

vantage is illustrated by one of the experiments presented

further on.

3. Discussion

Parameter minstride of the finest resolution naturally de-

termines the rank of distance corresponding to “nonsensi-

tivity level” of the algorithm to small deviations from the

route. Along short sections of the trajectory, comparable

with minstride, zigzagging may reach high values with-

out triggering an alarm. This allows the driver to safely

deviate to roadside facilities, such as hotels, restaurants or

service stations. This mechanism allows for some other ma-

neuvers as well: passing multi-level intersections, bypass-

ing local one-way roads, performing maneuvers required by

road signs. These trip disturbances may cause considerable

local trajectory zigzagging, even imply trajectory looping,

but as long as they are limited to a specific area of the

minstride rank, they will be accepted by the algorithm.

Memory usage. Memory usage of the presented algorithm

is O(rrbu f len · r), where

r =
⌈

log2

(maxroutelength
rrbu f len ·minstrade

)⌉

. (2)

The proposed algorithm assumes a limited length of the

route and rrbu f len and minstride are arbitrarily chosen

constants. While limiting the route length by constant

maxroutelength, constant memory usage is ensured. This

assumption is not very restrictive in practice and memory

usage increases only logarithmically with a potential in-

crease in maxroutelength.

Metrics used. In the algorithm, the length of shortest line

on the Earth surface between two points x, y is computed by

function dist(x,y). However, there is a possibility of using

map information instead, and of calculating the values of

dist(x,y) as the shortest road-based route between x and y.

Some additional care must be taken to account for poten-

tial noncommutativity of such a distance. This increases

the precision of the algorithm and boosts its independence

from specific road network configurations. Certainly, the

zigzagging limits would be decreased in such a scenario.

However, such a solution is complex to implement in large-

scale systems, i.e. for monitoring purposes. It requires ad-

ditional memory to cache the map data locally in order to

avoid extensive data traffic exchanges with the map server.

Moreover, cache memory should also offer a mechanism

for quickly calculating the distance between specific loca-

tions. Finding the shortest route online would clearly con-

sume too much resources. The mechanism should perhaps

contain some mesh of points with predefined distances and,

based on this data, should approximate the distance between

two given locations. This an interesting research problem

in itself.

Traveling salesman case. It is often the case that a vehicle

starting its trip has several destinations to visit. The algo-

rithm may still be applied to such a scenario, even when

the order of the visits is not known to the algorithm. The

trajectory covered so far needs to be simply reset to empty

and started anew upon any destination. This will allow

only the zigzagging along the route section between two

consecutive destination points to be examined. This frag-

ment should be economical, i.e. no excessive zigzagging

should be present. The extension expanding trajectories by

destination locations is slightly more difficult to adopt in

this case, since there are many destinations and we do not

know which is to be reached first. Therefore, at the receiv-

ing point xi, we should try all destinations and select the

scenario that is most favorable for the driver. If no attempts

trigger the alarm, the algorithm should keep quiet.

4. Numerical Demonstration

Several experiments with the proposed algorithm have been

conducted. Their aim was to simply validate the presented

approach, and to showcase the specific features and the

behavior of the algorithm in typical scenarios. The exten-

sion providing various zigzagging limits was on, while the

extension making use of the destination location was off

by default, and was only switched on in one experiment.

Default parameter settings were used.

A Java environment was used in the experiments. The code

was written to retain the algorithm’s efficiency, i.e. cyclic

buffers were used to collect the selected past points of the

trajectory.

The routes were generated in using the Google MyMaps

service as optimal routes form the town of Skierniewice

to Warsaw (Poland). To obtain uneconomical variants of

the route, specific mid-points were added to Google’s route

finder. These points served as illegal locations, while the al-

gorithm was still simply aware of Warsaw as the vehicle’s

destination. The algorithm observed the trajectory online

and triggered alarms, detecting suspected fraud. It needs

to be remained that the algorithm is designed to alert once

for each route to avoid a storm of alarms for consecutive

trajectory points. The point of the trajectory at which the

alarm occurred was registered and included in the subse-

quent presentation of the results.

The following experiments have been performed:

• the route from Skierniewice to Warsaw without any

mid-points. It was expected that this route would not

be assessed as suspicious;

• the route from Skierniewice to Warsaw with an

additional mid-point in a forest in the village of

Krakowiany, near the main road. This route includes

an apparent deviation using a road leading to the for-

est and should trigger an alarm. The forest, however,

is located near the main road (relatively to the length

of the entire route). Thus, zigzagging measure along

84

An Online Stream Monitoring Algorithm for Fraud Detection in the Transport of Goods

Fig. 4. Route from Skierniewice to Warsaw without a deviation – no alarm triggered.

Fig. 5. Route from Skierniewice to Warsaw with a deviation to a forest in Krakowiany. An alarm has been triggered on the local road

leading to Krakowiany, after visiting the village (during the return from the forest).

85

Paweł M. Białoń

Fig. 6. Route from Skierniewice to Warsaw with a deviation to Łódź. The alarm has been triggered after visiting Łódź, on the return

leg of the journey.

Fig. 7. Route from Skierniewice to Warsaw with a deviation to Łódź. The algorithm uses route augmentation, making use of the

knowledge of the destination. The alarm was triggered before reaching Łódź.

86

An Online Stream Monitoring Algorithm for Fraud Detection in the Transport of Goods

the entire route could not be excessive. The example

checks whether the algorithm reacts to an increase in

zigzagging observed locally;

• the route from Skierniewice to Warsaw, with a mid-

point of Łódź. When going to Łódź, a driver leav-

ing Skierniewice needs to go in the opposite direc-

tion than when heading to Warsaw. Therefore, such

a route should trigger an alarm;

• the route from Skierniewice to Warsaw, with a mid-

point of Łódź and, unlike in the case of other exper-

iments, the knowledge of the destination has been

used in this test. This means that the algorithm

augmented the trajectory covered so far with a seg-

ment between the current location and the destina-

tion. This augmentation should result in the alarm

being triggered even earlier than in a scenario without

augmentation.

The routes are presented in Figs. 4–7. The results of the ex-

periments are presented in the form of icons in pink circles

positioned at the locations where an alarm was detected.

Since the roads on which the alerts were triggered are of

the two-way variety, it is difficult to see, in the pictures,

which direction the vehicle was driving in while causing

the alarm. This is stated in the captions.

The alarms were triggered in concordance with our ex-

pectations. They appeared precisely along the routes with

mid-points that emulated illegal load or drop locations. The

route with the deviation to a forest shows the algorithm’s

ability to consider local route zigzagging. As far as the de-

viation to Łódź is concerned, the advantage of augmenting

the route with a segment between the current location and

the destination was shown. Without the augmentation, the

alarm is triggered after visiting the town. With the augmen-

tation, the alarm is generated earlier, on the way towards

Łódź. This is beneficial, since the algorithm with aug-

mentation is capable of making the same observations as

a human being. The vehicle is supposed to head for War-

saw, but drives in the opposite direction instead. Also, the

alarm is raised, in such a scenario, before the illegal ac-

tivity takes place, which allows the proactive actions to be

taken by the operator.

5. Conclusions

The proposed stream algorithm is capable of detecting truck

fraud. In contrast to its numerous counterparts, the pro-

posed solution uses an adequate and human-understood

route economy measure. It is lightweight and does not re-

quire a learning phase. In experimental trials it turned out

to behave reasonably and predictably.

References

[1] S. S. Dukare, K. Rane, and D. A. Patil, “Vehicle tracking, monitoring

and alerting system: a review”, Int. J. of Computer Applications,

vol. 119, no. 10, pp. 39–43, 2015 (DOI: 10.5120/21107-3835).

[2] “PUESC” [Online]. Available: http://puesc.gov.pl

[3] M. Saravanan, S. Aishwarya, and L. N. Aravindan, “Tracking

anomalies in vehicle movements using mobile GIS”, in 2013 Sci-

ence and Information Conf., London, 2013, pp. 845–852 [Online].

Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=6661840

[4] A. Kuepper, U. Bareth, and B. Freese, “Geofencing and back-

ground tracking – the next features in LBSs” in 41. Jahrestagung der

Gesellschaft für Informatik, INFORMATIK 2011 – Informatik schafft

Communities, Berlin, Germany, October 4-7, 2011 [Online]. Avail-

able: https://www.user.tu-berlin.de/komm/CD/paper/010221.pdf

[5] F. Reclus and K. Drouard, “Geofencing for fleet & freight manage-

ment”, in 2009 9th Int. Conf. on Intell. Transp. Syst. Telecommun.,

(ITST), 2009, pp. 353-356 (DOI: 10.1109/ITST.2009.5399328).

[6] P. Deshmukh, A. Bhajibhakre, S. Gambhire, A. Channe, and

N. Deshpande, “Survey of geofencing algorithms”, Int. J. of Comp.

Science Engin. Techniques, vol. 3, no. 2, 2018

(DOI: 10.29126/2455135x/IJCSE-V3I2P1).

[7] R. R. Sillito and R. Fisher, “Semi-supervised learning for anomalous

trajectory detection”, in Proc. of the British Machine Vision Conf.,

2008, pp. 103.1–103.10 (DOI: 10.5244/C.22.103).

[8] Y. Ge, H. Xiong, C. Liu, and Z. Zhou, “A Taxi Driving Fraud De-

tection System”, in 11th IEEE Int. Conf. on Data Min., Vancouver,

Canada, 2011, pp. 181–190 (DOI: 10.1109/ICDM.2011.18).

[9] J. B. Oliv, “Anomaly detection and modeling of trajectories”, M.Sc.

thesis, CMU-CS-12-133, School of Comput. Sc., Carnegie Mel-

lon University, Pittsburgh, 2012 [Online]. Available: http://reports-

archive.adm.cs.cmu.edu/anon/2012/CMU-CS-12-133.pdf

[10] Y. Bu, L. Chen, A. W. Fu, and D. Liu. “Efficient anomaly monitoring

over moving object trajectory streams”, in Proc. 15th ACM SIGKDD

Int. Conf. on Knowledge Discov. and Data Mining, Paris, France,

2009 (DOI: 10.1145/1557019.1557043).

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-

tion to Algorithms, 2nd ed. London: MIT Press, 2001

(ISBN: 9780262032933).

Paweł M. Białoń is with the

National Institute of Telecom-

munications. He received his

Ph.D. in Automatic Control and

Robotics from Warsaw Univer-

sity of Technology in 2013. His

scientific interests include deci-

sion support and optimization

with applications in telecom-

munications and data mining.

https://orcid.org/0000-0002-7781-9212

E-mail: P.Bialon@il-pib.pl

Advanced Information Technologies Department

National Institute of Telecommunications

Szachowa 1

04-894 Warsaw, Poland

87

