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Abstract  Wireless communication, especially that relying on
5G technology, plays a crucial role in modern networks. The use
of massive multiple-input, multiple-output (MIMO) systems
is one of the key advancements in this area, as it improves
energy efficiency (EE) and spectral efficiency (SE), making
such a technique critical for future communication networks.
This article focuses on optimizing EE and SE using a new
metaheuristic multiverse optimization algorithm (MVO), and
compares the results obtained with those achieved with the
use of the Pachycondyla Apicalis algorithm (API) and other
methods. Furthermore, the study explores the best values for
factors such as coherence time, power amplifier efficiency, and
hardware power in each user, with all of them playing a critical
role in maximizing EE. The authors also examine the correlation
between EE and SE in the downlink direction. The results show
that the MVO approach achieves better performance in fewer
iterations compared to API and other methods, demonstrating
its potential for improving wireless communication systems.
Keywords  5G, energy efficiency, massive MIMO, multiverse
optimizer, Pachycondyla Apicalis algorithm, spectral efficiency

1. Introduction
In recent years, the number of electronic devices connected
to the Internet has grown quite rapidly. The fact that mobile
phones, machines, cars, drones, and many other devices are
connected to the web creates several challenges. We face
such issues as higher amounts of interference, poor power
efficiency, high propagation losses, and low communication
efficiency [1], [2]. Traditional antennas are not capable of
handling this massive increase in the number of devices they
serve. Therefore, it is crucial to improve antennas and adopt
new technologies that can manage such large numbers of
connections.
Technologies such as massive multiple input multiple output
(MIMO), beamforming, and precoding are key solutions [3].
These advances are part of new radio (NR) systems which are
designed to support the growing number of users. They are
capable of providing high data rates and improving spectral
efficiency by at least ten times [4].

This paper focuses on using the massive MIMO technology
to address the challenges faced. In a communication system
relying on massive MIMO, the base station (BS) and the users
interact in a way that utilizes many antennas in the BS to
improve signal quality and efficiency [5]. When a user sends
a request or data, the base station uses its large number of
antennas to transmit the data to the user. These antennas work
together to simultaneously send multiple signals to different
users or even the same user, but using different channels or
frequencies [6], [7]. This process is called “beamforming”,
where the BS can direct its signal, in a focused manner, to
a specific user, thus improving the strength of the signal and
reducing interference from other users [8].

On the user’s side, a device like a smartphone has its own
antennas, and when it receives the BS signal, it decodes the
data. Communication occurs in such a way that the BS can
serve many users simultaneously, each with a dedicated and
stronger signal. Such a mode of operation improves network
efficiency, ensures faster data speeds and offers more reliable
connections [9].

The trade-off between spectral efficiency (SE) and energy
efficiency (EE) is an important factor we focus on in this
study. An increase in SE affects EE. In this paper, we aim to
find the optimal balance between SE and EE. Specifically, we
want to identify the ideal combination between the number
of users and antennas and the transmission power to achieve
the best values of both SE and EE. High SE and high EE are
critical for the success of 5G networks, as they ensure faster
data rates and lower energy consumption, improving overall
network performance.

The proposed approach uses two different metaheuristic algo-
rithms, i.e. multiverse optimization and Apicalis Pachycondy-
la, to enhance both SE and EE. We analyze how different
parameters, such as power amplifier efficiency, coherence
time, and hardware power at each user, affect EE. By exam-
ining the relationship between SE and EE, we aim to find the
critical point that gives the highest values for both factors.
Finally, the EE-SE trade-off is derived in a closed form, re-
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ducing computational complexity by expressing the essential
derivatives in terms of power, thus making it easier to find
the optimal solution.
This paper is organized as follows. Section 2 reviews related
articles, summarizes their main ideas, and describes the
methods used. Section 3 provides an overview of the key
aspects of massive MIMO. In Section 4, we explain the
functioning of two metaheuristic algorithms: the multiverse
optimizer (MVO) and Pachycondyla APIcalis (API). Section 5
presents the simulation results and compares the performance
of MVO and API with other methods. Finally, Section 6
concludes the article.

2. Related Works

Numerous studies have been dedicated to improving energy
efficiency in massive MIMO systems. For example, article
[10] explores hybrid systems that combine massive MIMO
with other technologies to improve EE. Similarly, paper [11]
proposed two energy efficient beamforming algorithms for
multi-user downlink systems, aiming to improve EE while
meeting SINR constraints. The methods investigated showed
better results than traditional beamforming techniques and
pointed out the need to study the effect of circuit power further.
In addition, in articles [12], [13], the authors did not look at
spectral efficiency (SE).
On the other hand, some research focused solely on improving
SE. For example, [14] studied how massive multiuser MIMO
systems perform during uplink transmission, when the base
station is equipped with many antennas and each user has
just one. They created methods to improve SE. In addition,
in [15], the goal is to improve the number of users that
may connect and communicate efficiently within a given
network. The researcher proposes a new design that groups
users by location or similar characteristics and serves each
group with the best-suited method. This approach reduces
the required number of antennas, while still achieving high
efficiency and providing better performance compared to
older methods [16]. This article aims to reduce power usage
in massive MIMO systems by using low-resolution (2-bit)
ADCs. It studies how these ADCs affect spectral efficiency of
the system’s uplink under different conditions, such as perfect
and imperfect knowledge of the communication channel.
The proposed method involves mathematical modeling and
formulas to predict SE performance, showing that even with
low-cost ADCs, good results can be achieved in massive
MIMO systems. All this work achieves good results, but does
not take into account.
Some studies have explored the balance between spectral ef-
ficiency (SE) and energy efficiency (EE) in massive MIMO
systems. For example, in [17], the researchers used determin-
istic and analytical methods focusing on power allocation
and selection of access points (AP) through closed form
derivations and system constraints. However, they did not use
metaheuristic algorithms, relying instead on structured opti-
mization techniques to enhance energy efficiency in cell-free

massive MIMO systems. Similarly, in [4], the authors ad-
dressed the challenge of optimizing resource efficiency (RE)
in a single-cell massive MIMO downlink transmission. Their
work considered statistical channel state information at the
transmitter (CSIT) to find a balance between SE and EE using
mathematical optimization and algorithmic design.
In study [5], the trade-off between SE and EE is analyzed by
solving a multi-objective optimization problem. The paper
investigates how transmit power and the number of antennas
impact this trade-off by examining their first derivatives. In
the same context, article [18] used geometric programming
to optimize SE and EE in a unified massive cell-free MIMO
system with simultaneous wireless information and power
transfer (SWIPT). Like the remaining studies mentioned, the
work did not employ metaheuristic algorithms.
Although these studies contributed valuable information about
SE and EE optimization, they all relied on structured or math-
ematical methods rather than metaheuristic algorithms. In
contrast, our work introduces two novel metaheuristic al-
gorithms in this field: the multiverse optimization (MVO)
algorithm, which has not been applied to massive MIMO
systems before, and the Pachycondyla Apicalis (API) algo-
rithm. We compare the performance of these algorithms to
determine which one achieves better results.

3. Massive MIMO

Massive MIMO is a fundamental innovation in modern wire-
less communication systems [19], [20]. It addresses the grow-
ing demand for high-speed data and reliable connections, i.e.
challenges that traditional single-input single-output (SISO)
systems were not capable of overcoming due to their limited
data rates and inability to support multiple users simultane-
ously [21].
To overcome the limitations of SISO, advanced MIMO tech-
nologies, such as single-user MIMO (SU-MIMO) [22], mul-
tiuser MIMO (MU-MIMO) [23], and network MIMO [24],
were developed. These technologies improved capacity but
struggled with the exponential growth in wireless users and
data demands. With billions of connected devices, includ-
ing devices connected to the Internet of Things (IoT) in smart
homes, healthcare, and energy systems, more efficient solu-
tions have become essential [19].
Massive MIMO extends traditional MIMO by deploying
hundreds or even thousands of antennas at the base station
[25], [26]. This setup improves wireless performance by better
focusing energy into smaller spatial regions, thus enhancing
spectral efficiency and throughput. Narrowing and directing
beams to target users also reduces interference and improves
connectivity.
Massive MIMO operates efficiently using time division du-
plexing (TDD) which divides communication into three main
phases during a coherence interval [27]. In the first phase,
called channel estimation, users send unique pilot sequences
to the base station (BS). The BS estimates the channel state
information (CSI) using these pilots. Accurate CSI enables
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Fig. 1. Massive MIMO transmission concept.

precise signal precoding for the downlink phase. During
downlink transmission, the BS uses channel estimates and
user-specific data to create pre-coded signals that are trans-
mitted through multiple antennas to all users in the same
time-frequency resource. This process improves communica-
tion efficiency and reliability by using channel information to
reduce interference and optimize energy usage.
Massive MIMO offers several key advantages over traditional
MIMO systems. It provides higher spectral efficiency by
reusing time-frequency resources for multiple users. It also
improves energy efficiency by focusing beams to reduce power
wastage and interference. Additionally, it improves reliability
by supporting more users with stable connections. These
advantages make massive MIMO indispensable for 5G and
future networks [19], [20].
Figure 1 illustrates the downlink transmission in a massive
MIMO setup. The BS in a cell transmits the downlink signal
xl as follows:

xl =
K∑
k=1

wkl qk , (1)

where qk ∼ CN(0, ρkl) represents the data signal intended
for user equipment (UE) k in cell l, and wkl ∈ CM is the
precoding vector directing the signal. The precoding vector
satisfies E[ |wkl|2] = 1, ensuring E[ |xl|2] = ρkl, which
corresponds to the transmit power for UE k. The received
signal yik at UE k in cell i is:

yik = h
H
iilk wkl qk +

∑
l ̸=i

K∑
j=1

hHiilk wjl qj + nik , (2)

where hiilk denotes the channel between BS l and UE k in
cell i, and nik ∼ CN(0, σ2) represents additive noise. The
received signal consists of the desired signal, interference
between cells, and noise [27].

3.1. Energy Efficiency in Wireless Networks

Energy efficiency (EE) is a key feature in modern wireless
networks, especially after the introduction of the 5G technol-
ogy. EE measures how much data can be transmitted using
a certain amount of energy [28], [29]. It is calculated as:

EE =
Throughput [bit/s/cell]

Power consumption [W/cell]
. (3)

This ratio, expressed in bits per Joule, helps reduce costs
and environmental impact. Improving EE involves techniques
such as setting base stations to sleep mode when traffic is low,
using renewable energy, and optimizing resources such as
antennas, spectrum, and power.
The MIMO technology is a major contributor to improving
EE, as it increases spectral efficiency. This means that more
data can be sent using the same amount of energy, making
networks more energy efficient [22], [30]–[32].
To model and calculate EE, we use the following objective
function [33]:

EE =
N ∗AUR
Ptot

, (4)

whereN is the number of active antennas,AUR is the average
user rate, and Ptot is the total power consumption. These
values are defined using the following specific equations.
The average user rate represents the average data rate for each
user, influenced by factors such as the number of antennas
and the transmitting power. It is calculated as [33]:

AUR = Ravg = ω
(
1− N

ωc · tc

)
log2

(
1 +

pt
N
(M −N)

p2nΨ1 + ptΨ2

)
.

(5)
Total power consumption includes all sources of power used in
the network, such as transmission, hardware, and processing.
It is given by [33]:

Ptot =
pt
η
+MpMc +Np

N
c +
FP

ηc
+ ps . (6)

Floating point processes represent the computational load of
the system, calculated as [33]:

FP = 3N2M
ω

ωc tc
. (7)

Several parameters influence EE and overall system perfor-
mance:
• Mmax – maximum number of antennas at the base station,

which determines the capacity of the system. More antennas
mean better beamforming and spectral efficiency,
• ω – transmission bandwidth, defining the range of fre-

quencies for communication. A wider bandwidth supports
higher data rates,
• p2n – average noise power, which affects signal quality and

SNR.
• Ψ1 and Ψ2 – these represent channel conditions and inter-

cell interference. Good channel conditions Ψ1 and lower
interference Ψ2 lead to higher efficiency.
• η – power amplifier efficiency, which impacts energy con-

sumption during transmission.
• ps – static hardware power, representing the baseline energy

used by such components as cooling systems.
• ηc – computational efficiency, indicating how effectively

the system processes tasks.
• ωc and tc – coherence bandwidth and time, critical for

stable communication and efficient resource allocation.
By integrating advanced technologies, such as massive MIMO
and carefully optimizing the above parameters, we can signifi-
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cantly improve EE in wireless networks. This not only reduces
energy consumption, but also enhances network performance,
making future communication systems more sustainable.

3.2. Spectral Efficiency

Spectral efficiency (SE) measures how efficiently a wireless
system uses its available frequency spectrum. It is expressed
in bits per second per Hertz (bps/Hz). In massive MIMO
systems, the use of large-scale antenna arrays greatly improves
SE. The mathematical expression for SE is:

SE = log2(1 + SINR) , (8)

where SINR is the signal-to-interference plus noise ratio.
Adding more antennas increases SINR, leading to higher
spectral efficiency [29], [34].
To further improve SE in wireless networks, several tech-
niques can be used. An increased in the number of antennas
in a massive MIMO systems enhances spatial multiplexing
and reduces interference, improving SINR. Optimizing beam-
forming techniques also focuses the signal more effectively
towards intended users, reducing interference, and boost-
ing SE. Advanced modulation and coding schemes allow
more bits to be transmitted per Hertz, additionally increas-
ing SE. Furthermore, advanced interference management
methods, such as interference cancellation and coordination
between base stations, can improve SE, especially in dense
networks [35].
In this work, we use the following objective function to model
SE:

SE =
N ∗AUR
ω

. (9)

4. Algorithm Description and
Methodology

4.1. Multi-Verse Optimizer Algorithm

In this paper, the multiverse optimizer (MVO) is used, in-
spired by three key concepts: white holes, black holes, and
wormholes. These ideas are integrated into the algorithm’s
key steps and equations.
White holes help in the exploration process. In cosmology,
the Big Bang is considered a white hole, and in the multi-
verse theory, collisions between universes can create white
holes, acting as gateways between them. Universes with high
inflation rates are more likely to have white holes that trans-
port objects outwards, unlike black holes that pull things
in [36], [37].
Black holes have strong gravitational pulls, trapping objects,
including light. They are more common in universes with low
inflation rates and can receive objects from white holes. This
exchange between white holes and black holes allows to trans-
fer variables between universes [38], [39]. The mechanism is
outlined as follows:

xji =

{
xjk r1 < NI(Ui)

xji r1  NI(Ui)
. (10)

Wormholes act as tunnels, allowing objects to move between
different parts of a universe or between universes. In MVO,
wormholes randomly transport objects between a universe and
the best universe found so far. The probability of a wormhole
appearing and the distance at which it moves objects are
controlled by two factors [37], [39].
Adaptive wormhole existence probability (WEP) represents
the likelihood of wormholes appearing within universes dur-
ing an optimization process.

WEP = min+ l × max−min
L

. (11)

Adaptive traveling distance rate (TDR) controls how far
the variables can move from the best solution when using
wormholes.

TDR = 1− l
1
p

L
1
p

, (12)

xji =




xj + TDR×

(
(ubj − lbj)× r4 + lbj

)
r3 < 0.5

xj − TDR×
(
(ubj − lbj)× r4 + lbj

)
r3  0.5

r2 <WEP

xji r2 WEP
(13)

The general steps of the MVO algorithm are the following:
Initialization. The algorithm starts by defining key parame-
ters for the MVO, such as white hole exploration probability
(WEP), travel distance rate (TDR), and the number of uni-
verses p. These parameters control the exploration and ex-
ploitation during optimization. A random initialization of
the universes is performed, where each universe represents
a potential solution to the problem.
Normalization. Once the universes have been initialized,
they are sorted based on their fitness values (a measure of
how good the solution is). The inflation rates of all universes
are then normalized to create a probabilistic model, where
better universes (higher fitness) are more likely to influence
others.
Fitness evaluation. For each universe in the population, the
fitness function is evaluated. This function quantifies the
quality of the solution represented by the universe, guiding
the optimization process.
Loop start. The algorithm enters a loop to iterate through all
universes. It starts with i = 1, representing the first universe,
and processes each one sequentially to update its properties.
Update parameters. WEP and TDR parameters are dynami-
cally updated during the iteration. This adjustment balances
exploration (searching new areas) and exploitation (refining
known good solutions). The blackhole index, representing the
best universe, is identified based on the highest fitness value.
Inner loop. A nested loop begins with j = 1, representing
the first object (variable) within the universe. The algorithm
will iterate through all objects in the universe for potential
updates.
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Generate random value. A random number r is generated
between 0 and 1. This random value determines whether an
object in the current universe will be replaced based on white
hole probabilities.
Check the probability of a white hole. If the random number
r is less than WEP, the object is replaced using a roulette wheel
selection mechanism, where objects from better universes
(white holes) are more likely to be chosen. Otherwise, the
object remains unchanged.
Increment object index. The index j is incremented to
process the next object within the universe. If all objects
have been processed (j > number of objects), the algorithm
proceeds to the next step.
Check universe completion. Index i is incremented to pro-
cess the next universe. If all universes have been processed
(i > number of universes), the algorithm moves to check the
stopping criteria.
Check stopping criteria. The algorithm evaluates whether
the stopping criteria, such as reaching the maximum number
of iterations or convergence to an optimal solution, are met.
If the criteria are satisfied, the algorithm finishes to operate.
Otherwise, it restarts the loop for the next iteration.
End. The algorithm concludes by outputting the best universe,
representing the optimal solution to the problem.

4.2. Pachycondyla Apicalis Algorithm

The API algorithm, inspired by the foraging behavior of
Pachycondyla Apicalis ants, efficiently balances exploration
and exploitation to solve optimization problems. Each ant
operates individually, performing local searches around hunt-
ing sites and dynamically updating its strategies based on
results. These ants collectively contribute to the search pro-
cess through implicit and explicit cooperation. Implicitly,
their independent exploration diversifies the search, while ex-
plicit recruitment allows ants to share high-quality solutions,
fostering global optimization [32], [42].
The robustness of the approach is enhanced by a hetero-
geneous population of ants with varying amplitudes of ex-
ploration, Alocal and Asite, which improves adaptability to
diverse problem landscapes. Periodic nest movement, act-
ing as a dynamic restart mechanism, prevents stagnation in
suboptimal solutions and allows ants to refocus their search
efforts on the most promising areas.
Additionally, success-based memory prioritizes productive
hunting sites while forgetting unproductive ones, ensuring
efficiency. Key functions, such as defining the search space,
global exploration Orand, local refinement Oexplo, and nest
movement work together to maximize the objective function,
integrating local exploitation with global exploration [40],
[41].
The main equations governing the algorithm are described
below:
• Random initialization (global search): The nest locationN

is initialized randomly in the search space S using:

xi = bi + U [ 0, 1 ]× (Bi − bi) , (14)

where bi and Bi are the bounds of the i-th dimension in S,
and U [0, 1] is a uniform random value.
• Local exploration (neighborhood search): Around a hunting

site s, ants refine their search using:

x′i = xi + U [−0.5, 0.5]×A× (Bi − bi) , (15)

where A is the exploration amplitude.
• Global and local exploration parameters:

Asite(i) = xi × 0.01 , (16)

Alocal(i) =
Asite(i)
10

. (17)

These parameters govern the range of global and local
exploration, respectively.
• Relocation of the nest. The nest is moved to the best solution
s∗ found after T iterations:

N = s∗. (18)

• Recruitment (cooperation).
Two ants compare their best sites. If f(sitei) < f(sitej),
replace sitej with sitei.

Building on these principles, the API algorithm follows
a structured sequence of steps to achieve optimization, as
outlined below [43], [44]:
1) Initialization – place the nest in the search area. Set the

number of ants, hunting sites, and exploration range.
2) Hunting site exploration – ants search around their hunting

sites. If they find a better result, they update the site. If
not, they choose a new site.

3) Recruitment (optional) – compare the results of two ants.
The weaker site is replaced with the stronger one.

4) Nest movement – move the nest to the best location found
after a set number of attempts. Start the search again near
the new nest.

5) Stopping criterion – stop when the maximum number of
attempts is reached or a good enough result is found.

5. Numerical Results and Discussion

Building 5G networks is challenging because we need to
balance several goals: service for fast-moving users, high net-
work capacity, and efficient power usage. These goals often
conflict with each other, so we rely on multi-objective op-
timization techniques to find the best possible solutions. In
our research, we apply two metaheuristic algorithms: mul-
tiverse optimizer (MVO) and Pachycondyla Apicalis (API),
using Matlab. We tested different numbers of users, antennas,
and transmission power levels to identify the ideal setup. This
approach helps us design 5G networks that deliver excellent
performance:

X =


1 ¬ N ¬ M2

[NMPt]T 2 ¬M ¬Mmax
0 ¬ p ¬MPmaxt
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Fig. 2. EE performance versus the number of BS antennasM for
different hardware power at each pNc .

In this study, we wanted to see how parameter pNc affects
energy efficiency in a massive MIMO system. We tested three
different values: pNc = 0.5W, pNc = 0.2W, and pNc = 0.1W.
The value pNc = 0.5W represents older hardware, which is
less energy efficient. The value pNc = 0.2W represents more
modern and efficient hardware, while pNc = 0.1W represents
highly optimized hardware with excellent power efficiency.
Our goal was to observe how these values impact energy
efficiency as the number of antennas continues to grow.
From the results shown in Fig. 2, we observed that energy
efficiency improves significantly as the number of antennas
increases, but it eventually reaches a peak and then decreases
slightly. Lower values of pNc = 0.1W result in higher ener-
gy efficiency compared to higher values of 0.5 W. This is the
case because more efficient hardware reduces power losses,
leading to better overall energy performance. However, af-
ter a certain point, adding more antennas starts to increase
power consumption without providing significant gains in
energy efficiency. In conclusion, using modern, low-power
hardware is essential for achieving high energy efficiency in
massive MIMO systems, but there is also a limit to how much
increasing the number of antennas can improve performance.
In our previous analysis, we studied how pNc affects energy ef-
ficiency in massive MIMO systems. Now, we want to see how
EE is affected by parameter η (Fig. 3). We tested three dif-
ferent values: η = 0.25, 0.35, and 0.45. The value η = 0.25
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Fig. 3. Impact of power amplifier efficiency η on the corresponding
energy efficiency.

represents older systems, which are less efficient. The value
η = 0.45 represents modern systems with better efficiency.
We also introduced an intermediate value, η = 0.35, to ex-
plore a balanced setup. Our goal is to understand how these
values influence energy efficiency as the number of antennas
increases.
From the results, we observed that energy efficiency improves
as the number of antennas increases, similarly to our findings
regarding hardware power at each user. However, the efficien-
cy reaches a peak and then starts to decline slightly. Higher
values of η = 0.45 result in better energy efficiency, because
they represent more advanced systems with optimized per-
formance. The intermediate value of η = 0.35 shows ranks
between older and modern systems, indicating a balanced
trade-off. In conclusion, modern systems with higher η values
perform better in terms of energy efficiency, but increasing
the number of antennas beyond a certain point does not bring
significant improvements and may even slightly reduce effi-
ciency. These findings, combined with our previous analysis
of pNc , highlight the importance of both hardware efficiency
and system parameters in designing energy efficient massive
MIMO networks.
After we found the best values of pNc and η for energy ef-
ficiency in massive MIMO systems, we wanted to see how
the coherence time tC impacts EE – see Fig. 4. We tested
three different values: tC = 3 ms, 5 ms, and 7 ms. The value
tC = 3ms represents scenarios with fast-moving users, where
the channel conditions change quickly. The value tC = 7 ms
represents low mobility scenarios, where the channel remains
stable for a longer time. We also tested an intermediate value
of tC = 3 ms, to find a balance between these two situa-
tions. Our goal is to understand how these coherence time
values influence energy efficiency as the number of antennas
increases.
From the results, we observed that energy efficiency improves
as the number of antennas increases, similarly to our findings
concerning pNc and η. However, the efficiency eventually
reaches a peak and then decreases slightly. Higher values
of tC = 7 ms result in better energy efficiency, because
more stable channel conditions allow better data transmission
with fewer updates. On the other hand, lower values (e.g.,
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3 ms) are characterized by reduced efficiency due to frequent
updates and higher overhead. The intermediate value of tC =
5 ms offers a balanced performance ranking between the two
extremes.
Table 1 summarizes all the values that we used.
After testing different hardware power per user pNc , power
amplifier efficiency η, and coherence time tC values, we se-
lected the best value. Here, we observe how energy efficiency
and spectral efficiency change simultaneously as a function of
two parameters: number of users N and number of antennas
M .
Figure 5 shows how energy efficiency changes with the num-
ber of antennasM and the number of usersN . When bothM
and N increase, energy efficiency improves and reaches its
highest point. For example, when there are 300 antennas and
100 users, the EE value is 17.01, confirming very good effi-
ciency in a large system. However, with fewer antennas and
users, e.g. 20 antennas and 4 users, EE drops to 4.578, show-

Tab. 1. Set of parameters defining the system model.

Parameter Name Value

Mmax Maximum number of antennas 300
ω Transmitting bandwidth 10 MHz
p2n Average noise power 10−13 W
Ψ1 Inverse channel loss 1.72 · 109

Ψ2 Intercell interference strength 0.540
pNc Hardware power at each user 0.2 W
ps Static hardware power 10 W

ηc
Typical computational

efficiency
12.8

Gflops/W
ωC Bandwidth of coherence 200 kHz
tC Coherence time 7 ms

η
The power amplifier’s

efficiency 0.45

PMC Hardware power consumption 0.5 W
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Fig. 6. Spectral efficiency as a function of the number of antennas
and users in massive MIMO systems.

ing poor efficiency due to limited resources. In a medium
range, with 110 antennas and 37 users, EE reaches 14.49,
showing a good balance, but not the highest efficiency. This
pattern shows that there is an optimal point where the balance
between antennas and users gives the best energy efficien-
cy. Adding more antennas or users after this point does not
significantly improve and may even reduce efficiency levels.
The 3D graph shown in Fig. 6 illustrates how spectral efficien-
cy changes with the number of antennasM and the number
of users N .
When bothM and N increase, SE improves. For example, at
300 antennas and 100 users, SE reaches 201, showing very
good use of the available bandwidth. But with fewer antennas
and users, e.g. 20 antennas and 7 users, SE drops to 14.05,
showing poor performance due to limited resources.
In the middle range, with 170 antennas and 53 users, SE
reaches 117.8, showing a good balance but not the best ef-
ficiency. At first, increasing the number of antennas greatly
improves SE, but after a certain point, the improvement slows
down and efficiency stops growing significantly.
It is important to note that if there are many users and few
antennas, the system struggles to manage the users properly,
leading to low SE. This happens because a small number
of antennas cannot effectively handle many users through
beamforming and spatial diversity.
The two graphs presented in Figs. 7 and 8 show how energy
efficiency and spectral efficiency are related in a massive
MIMO system.
In the 2D graph, as the number of users increases, EE also
increases along with SE, but then starts to drop after reaching
a peak point. For example, when N = 60, the peak occurs at
SE = 120 and EE = 16. This happens because adding more
users or increasing SE needs more energy and after a point,
the system cannot remain efficient.
In the 3D graph, as the number of antennas increases, both SE
and EE increase, but only up to a certain limit. After this peak,
EE starts to drop, while SE continues to rise. For instance,
when M = 100, SE = 150 and EE = 12. This shows that
achieving a higher SE requires more energy, which limits EE.
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This behavior proves that after a certain point, the increase
in SE consumes too much power and reduces overall EE. To
get the best results, it is important to find the right balance
between the number of users and the number of antennas to
avoid wasting energy.
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Fig. 9. Optimization of energy efficiency as a function of the number
of iterations using the MVO algorithm.
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number of iterations using the MVO algorithm.
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Fig. 11. Optimization of energy efficiency as a function of the
number of iterations using the API algorithm.

A comparative analysis of two metaheuristic algorithms, i.e.
MVO and API, was performed to evaluate spectral efficiency
and energy efficiency. Both algorithms were tested under
identical parameters, including the number of iterations set
to 100, to ensure a fair comparison (Figs. 9–12). From the
results, it is evident that the MVO algorithm outperforms the
API in terms of both objectives. Ater 100 iterations, MVO
achieved optimal values of SE = 83.55 and EE = 31.44, while
API reached SE = 80 and EE = 30. This demonstrates the
superior capability of MVO to optimize both spectral and
energy efficiency in this scenario.
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Fig. 12. Optimization of spectral efficiency as a function of the
number of iterations using the API algorithm.
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Tab. 2. Comparison between MVO and API algorithms for SE.

Criterion MVO API

Convergence
speed Faster Slower

Stability Stable after 50 iterations Fluctuates
significantly

Final value ∼ 83.55 ∼ 78–80

Trend Smooth growth Irregular
growth

Overall
performance Better Moderate

Tab. 3. Comparison between MVO and API for EE.

Criterion MVO API

Convergence
speed Faster, distinct steps Gradual, smooth

rise

Stability Perfectly stable after
70 iterations

Minor
fluctuations

persist
Final value ∼ 31.44 ∼ 30–32

Trend Step-like growth Smooth growth
Overall

performance Slightly better Good but less
stable

5.1. Comparison of MVO and API

Tables 2–3 compare the performance of MVO and API in
terms of spectral efficiency and energy efficiency. As far as
SE is concerned, MVO is faster and more stable, achieving
a higher final value of approx. 83.55. API is slower, with more
fluctuations, and reaches a lower final value of 78 to 80. The
growth trend for MVO is smooth, while API shows irregular
growth. Overall, MVO performs better in terms of SE.
As far as EE is concerned, MVO also shows better results. It is
faster with distinct steps and becomes perfectly stable after 70
iterations. API rises smoothly, but shows minor fluctuations.
The final value of EE for MVO is approximately 31.44, which
is slightly higher than the API range of 30 to 32. The growth
trend for MVO is step-like, while API shows smooth growth.
Overall, MVO is better, but API still remains good.
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Fig. 13. Comparison of the spectral efficiency values (API and
MVO) for the proposed algorithm and other papers.

0

5

10

15

20

25

30

MVO API [18] [17] [5] [4]

31.44 30.0

4.9

22.0

28.0

4.5

Fig. 14. Comparison of energy efficiency values (API and MVO)
for the proposed algorithm and other papers.

6. Conclusions

In this work, we focused on optimizing spectral efficiency
and energy efficiency using the massive MIMO technology in
the downlink direction. By testing various hardware power,
power amplifier efficiency, and coherence time values, we
identified the best parameters to achieve an effective balance
between SE and EE. Our results showed a trade-off between
these two metrics, highlighting their interdependence.
We applied two metaheuristic algorithms, MVO and API, to
analyze performance differences. Although both algorithms
showed promising results, MVO consistently outperformed
API by achieving higher SE and EE values in a shorter lead
time. Finally, we compared our findings with previous works,
further validating the superior efficiency and stability of the
MVO algorithm (Figs. 13–14). This study confirms that MVO
is a powerful tool for optimizing massive MIMO systems,
offering significant improvements that may benefit modern
wireless networks.
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