Obiekt

Tytuł: Performance Comparison of Four New ARIMA-ANN Prediction Models on Internet Traffic Data, Journal of Telecommunications and Information Technology, 2015, nr 1

Opis:

Prediction of Internet traffic time series data (TSD) is a challenging research problem, owing to the complicated nature of TSD. In literature, many hybrids of auto-regressive integrated moving average (ARIMA) and artificial neural networks (ANN) models are devised for the TSD prediction. These hybrid models consider such TSD as a combination of linear and non-linear components, apply combination of ARIMA and ANN in some manner, to obtain the predictions. Out of the many available hybrid ARIMA-ANN models, this paper investigates as to which of them suits better for Internet traffic data. This suitability of hybrid ARIMA-ANN models is studied for both one-step ahead and multi-step ahead prediction cases. For the purpose of the study, Internet traffic data is sampled at every 30 and 60 minutes. Model performances are evaluated using the mean absolute error and mean square error measurement. For one-step ahead prediction, with a forecast horizon of 10 points and for three-step prediction, with a forecast horizon of 12 points, the moving average filter based hybrid ARIMA-ANN model gave better forecast accuracy than the other compared models.

Wydawca:

National Institute of Telecommunications

Format:

application/pdf

Identyfikator zasobu:

oai:bc.itl.waw.pl:1853 ; ISSN 1509-4553, on-line: ISSN 1899-8852

DOI:

10.26636/jtit.2015.1.769

ISSN:

1509-4553

eISSN:

1899-8852

Źródło:

Journal of Telecommunications and Information Technology

Język:

ang

Prawa:

Biblioteka Naukowa Instytutu Łączności

Kolekcje, do których przypisany jest obiekt:

Data ostatniej modyfikacji:

11 wrz 2024

Data dodania obiektu:

8 lut 2016

Liczba wyświetleń treści obiektu:

118

Wszystkie dostępne wersje tego obiektu:

https://ribes-54.man.poznan.pl/publication/2119

Wyświetl opis w formacie RDF:

RDF

Wyświetl opis w formacie OAI-PMH:

OAI-PMH

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji