Object

Title: Implementation of Selected Spectrum Sensing Systems for Cognitive Radio Networks using FPGA Platform, Journal of Telecommunications and Information Technology, 2018, nr 4

Description:

The energy efficient spectrum sensing method is very important in cognitive radio (CR), since high power drain may limit its implementation in mobile applications. The spectrum sensing feature consumes more energy than other functional blocks, as it depends on continuous detection of the presence or absence of the primary user (PU). In this paper, we proposed two methods to reduce energy consumption of the spectrum sensing feature. The first is of a single stage variety with a reduced number of sensed samples. The other uses two stages. The first stage performs coarse sensing for many subchannels, and the best subchannel is forwarded for fine sensing in the second stage. The performance of the proposed methods is evaluated in AWGN channel and compared with the existing approach. The proposed methods are simulated using Matlab and ModelSim and are then hardware implemented using the Altera Cyclone II FPGA board. Simulation results show that the proposed methods offer an improvement in energy consumption with an acceptable reduction in the probability of detection. At Eb/N0 Eb/N0 Eb/N0 of 0 dB, the energy consumption is reduced by 50% and 72% in the first and second proposed method, respectively, compared to the traditional method (100% sensing).

Publisher:

National Institute of Telecommunications

Format:

application/pdf

Resource Identifier:

ISSN 1509-4553, on-line: ISSN 1899-8852 ; oai:bc.itl.waw.pl:2061

Source:

Journal of Telecommunications and Information Technology

Language:

ang

Rights Management:

Biblioteka Naukowa Instytutu Łączności

Object collections:

Last modified:

Apr 15, 2019

In our library since:

Feb 4, 2019

Number of object content hits:

84

All available object's versions:

https://ribes-54.man.poznan.pl/publication/2348

Show description in RDF format:

RDF

Show description in OAI-PMH format:

OAI-PMH

Objects Similar

×

Citation

Citation style:

This page uses 'cookies'. More information