Obiekt

Tytuł: Improving Quality of Watermarked Medical Images Using Symmetric Dilated Convolution Neural Networks, Journal of Telecommunications and Information Technology, 2023, nr 2

Tytuł publikacji grupowej:

2023, nr 2, JTIT-artykuły

Opis:

Rapid development of online medical technologies raises questions about the security of the patient’s medical data.When patient records are encrypted and labeled with a watermark, they may be exchanged securely online. In order to avoid geometrical attacks aiming to steal the information, image quality must be maintained and patient data must be appropriately extracted from the encoded image. To ensure that watermarked images are more resistant to attacks (e.g. additive noise or geometric attacks), different watermarking methods have been invented in the past. Additive noise causes visual distortion and render the potentially harmful diseases more difficult to diagnose and analyze. Consequently, denoising is an important pre-processing method for obtaining superior outcomes in terms of clarity and noise reduction and allows to improve the quality of damaged medical images. Therefore, various publications have been studied to understand the denoising methods used to improve image quality. The findings indicate that deep learning and neural networks have recently contributed considerably to the advancement of image processing techniques. Consequently, a system has been created that makes use of machine learning to enhance the quality of damaged images and to facilitate the process of identifying specific diseases. Images, damaged in the course of an assault, are denoised using the suggested technique relying on a symmetric dilated convolution neural network. This improves the system’s resilience and establishes a secure environment for the exchange of data while maintaining secrecy.

Wydawca:

Instytut Łączności - Państwowy Instytut Badawczy

Format:

application/pdf

Identyfikator zasobu:

oai:bc.itl.waw.pl:2278 ; ISSN 1509-4553, on-line: ISSN 1899-8852

DOI:

10.26636/jtit.2023.169223

eISSN:

1899-8852

Źródło:

Journal of Telecommunications and Information Technology

Język:

ang

Prawa:

Biblioteka Naukowa Instytutu Łączności

Kolekcje, do których przypisany jest obiekt:

Data ostatniej modyfikacji:

6 cze 2024

Data dodania obiektu:

18 lip 2023

Liczba wyświetleń treści obiektu:

41

Wszystkie dostępne wersje tego obiektu:

https://ribes-54.man.poznan.pl/publication/2589

Wyświetl opis w formacie RDF:

RDF

Wyświetl opis w formacie OAI-PMH:

OAI-PMH

Obiekty Podobne

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji