Obiekt

Tytuł: Enhancing DGA Detection with Machine Learning Algorithms, Journal of Telecommunications and Information Technology, 2025, Special Issue

Tytuł publikacji grupowej:

2025, Special Issue, JTIT-artykuły

Opis:

kwartalnik

Abstrakt:

The domain generation algorithm (DGA) is a popular technique used by malware to reliably establish a connection to a command and control (C&C) server. Pseudo-random domain names generated by DGA are used to bypass security measures and allow attackers to maintain control over malware-infected devices. In this work, we present a two-pronged approach to detecting character-based and word-based DGA domain names, creating classifiers specifically tailored to each type. For character-based DGA detection, we employed seven traditional machine learning methods: support vector machine, extremely randomized trees, logistic regression, Gaussian naive Bayes, nearest centroid, random forests, and k-nearest neighbors. We applied a featureful approach, using features extracted from the domain names themselves. Some of these features were drawn from existing literature, while others were newly proposed by authors. Feature selection techniques were used to retain only the best-performing ones. For the more complex task of detecting word-based DGA domain names, we used CNN and LSTM models, relying solely on word embeddings derived from the domain name components. Performance evaluation shows that proposed method gives high-performing, specialized DGA classifiers, which can be combined to create a more general-purpose classifier.

Numer:

Special Issue

Wydawca:

National Institute of Telecommunications

Identyfikator zasobu:

oai:bc.itl.waw.pl:2388

DOI:

10.26636/jtit.2025.FITCE2024.2033

eISSN:

on-line: ISSN 1899-8852

Źródło:

Journal of Telecommunications and Information Technology

Język:

ang

Prawa:

Biblioteka Naukowa Instytutu Łączności

Licencja:

CC BY 4.0

Kolekcje, do których przypisany jest obiekt:

Data ostatniej modyfikacji:

30 cze 2025

Data dodania obiektu:

30 cze 2025

Liczba wyświetleń treści obiektu:

1

Wszystkie dostępne wersje tego obiektu:

https://ribes-54.man.poznan.pl/publication/2705

Wyświetl opis w formacie RDF:

RDF

Wyświetl opis w formacie OAI-PMH:

OAI-PMH

Obiekty Podobne

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji